| | |
| | | * if a distance of point to plane (given by equation $D=\frac{ax_0+by_0+cz_0+d}{\sqrt{a^2+b^2+c^2}}$, where $x_0$, $y_0$ and $z_0$ are coordinates of a given vertex) is less than maximal allowed distance between vertices {\tt sqrt(vesicle->dmax)} than vertex is a candidate for crossection calculation. |
| | | * |
| | | */ |
| | | ts_coord_list get_crossection_with_plane(ts_vesicle vesicle,ts_double a,ts_double b,ts_double c, ts_double d){ |
| | | ts_coord_list *get_crossection_with_plane(ts_vesicle *vesicle,ts_double a,ts_double b,ts_double c, ts_double d){ |
| | | |
| | | |
| | | ts_uint i, j, k; |
| | | ts_uint i, j; |
| | | ts_double pp,Dsq; // distance from the plane squared |
| | | ts_double ppn,Dsqn; // distance from the plane squared of a neighbor |
| | | ts_double ppn; // distance from the plane squared of a neighbor |
| | | ts_double u; //factor to scale vector from first vector to the second to get intersection |
| | | ts_vertex *vtx; |
| | | |
| | | ts_coord_list *pts=init_coord_list(); |
| | | for(i=0;i<vesicle->vlist->N;i++){ |
| | | for(i=0;i<vesicle->vlist->n;i++){ |
| | | vtx=vesicle->vlist->vtx[i]; |
| | | |
| | | pp=vtx->x*a+vtx->y*b+vtx->z*c+d; |
| | |
| | | for(j=0;j<vtx->neigh_no;j++){ |
| | | ppn=vtx->neigh[j]->x*a+vtx->neigh[j]->y*b+vtx->neigh[j]->z*c+d; |
| | | if(pp*ppn<0){ //the combination of vertices are good candidates for a crossection |
| | | u=pp/(a*(vtx->x-vtx->neigh[j]->x)+b*(vtx->y-vtx->neigh[j]->y)+c(vtx->z-vtx->neigh[j]->z)); |
| | | add_coord(pts, vtx->x+u(vtx->neigh[j]->x - vtx->x), |
| | | vtx->y+u(vtx->neigh[j]->y - vtx->y), |
| | | vtx->z+u(vtx->neigh[j]->z - vtx->z), |
| | | u=pp/(a*(vtx->x-vtx->neigh[j]->x)+b*(vtx->y-vtx->neigh[j]->y)+c*(vtx->z-vtx->neigh[j]->z)); |
| | | add_coord(pts, vtx->x+u*(vtx->neigh[j]->x - vtx->x), |
| | | vtx->y+u*(vtx->neigh[j]->y - vtx->y), |
| | | vtx->z+u*(vtx->neigh[j]->z - vtx->z), |
| | | TS_COORD_CARTESIAN); |
| | | } |
| | | } |