New file |
| | |
| | | #include<math.h> |
| | | #include<stdlib.h> |
| | | #include<gsl/gsl_complex.h> |
| | | #include<gsl/gsl_complex_math.h> |
| | | #include<gsl/gsl_sf_legendre.h> |
| | | |
| | | #include<gsl/gsl_matrix.h> |
| | | #include<gsl/gsl_vector.h> |
| | | #include<gsl/gsl_linalg.h> |
| | | #include "general.h" |
| | | #include "sh.h" |
| | | #include "shcomplex.h" |
| | | |
| | | |
| | | ts_spharm *complex_sph_init(ts_vertex_list *vlist, ts_uint l){ |
| | | ts_uint j,i; |
| | | ts_spharm *sph=(ts_spharm *)malloc(sizeof(ts_spharm)); |
| | | |
| | | sph->N=0; |
| | | /* lets initialize Ylm for each vertex. */ |
| | | sph->Ylmi=(ts_double ***)calloc(l,sizeof(ts_double **)); |
| | | for(i=0;i<l;i++){ |
| | | sph->Ylmi[i]=(ts_double **)calloc(2*i+1,sizeof(ts_double *)); |
| | | for(j=0;j<(2*i+1);j++){ |
| | | sph->Ylmi[i][j]=(ts_double *)calloc(vlist->n,sizeof(ts_double)); |
| | | } |
| | | } |
| | | |
| | | /* lets initialize ulm */ |
| | | sph->ulm=(ts_double **)calloc(l,sizeof(ts_double *)); |
| | | sph->ulmComplex=(gsl_complex **)calloc(l,sizeof(gsl_complex *)); |
| | | for(j=0;j<l;j++){ |
| | | sph->ulm[j]=(ts_double *)calloc(2*j+1,sizeof(ts_double)); |
| | | sph->ulmComplex[j]=(gsl_complex *)calloc(2*j+1,sizeof(gsl_complex)); |
| | | } |
| | | |
| | | /* lets initialize sum of Ulm2 */ |
| | | sph->sumUlm2=(ts_double **)calloc(l,sizeof(ts_double *)); |
| | | for(j=0;j<l;j++){ |
| | | sph->sumUlm2[j]=(ts_double *)calloc(2*j+1,sizeof(ts_double)); |
| | | } |
| | | |
| | | /* lets initialize co */ |
| | | //NOTE: C is has zero based indexing. Code is imported from fortran and to comply with original indexes we actually generate one index more. Also second dimension is 2*j+2 instead of 2*j+2. elements starting with 0 are useles and should be ignored! |
| | | sph->co=(ts_double **)calloc(l+1,sizeof(ts_double *)); |
| | | for(j=0;j<=l;j++){ |
| | | sph->co[j]=(ts_double *)calloc(2*j+2,sizeof(ts_double)); |
| | | } |
| | | |
| | | sph->l=l; |
| | | |
| | | /* Calculate coefficients that will remain constant during all the simulation */ |
| | | precomputeShCoeff(sph); |
| | | |
| | | return sph; |
| | | } |
| | | |
| | | ts_bool complex_sph_free(ts_spharm *sph){ |
| | | int i,j; |
| | | if(sph==NULL) return TS_FAIL; |
| | | for(i=0;i<sph->l;i++){ |
| | | if(sph->ulm[i]!=NULL) free(sph->ulm[i]); |
| | | if(sph->ulmComplex[i]!=NULL) free(sph->ulmComplex[i]); |
| | | if(sph->sumUlm2[i]!=NULL) free(sph->sumUlm2[i]); |
| | | if(sph->co[i]!=NULL) free(sph->co[i]); |
| | | } |
| | | if(sph->co[sph->l]!=NULL) free(sph->co[sph->l]); |
| | | if(sph->co != NULL) free(sph->co); |
| | | if(sph->ulm !=NULL) free(sph->ulm); |
| | | if(sph->ulmComplex !=NULL) free(sph->ulmComplex); |
| | | |
| | | if(sph->Ylmi!=NULL) { |
| | | for(i=0;i<sph->l;i++){ |
| | | if(sph->Ylmi[i]!=NULL){ |
| | | for(j=0;j<i*2+1;j++){ |
| | | if(sph->Ylmi[i][j]!=NULL) free (sph->Ylmi[i][j]); |
| | | } |
| | | free(sph->Ylmi[i]); |
| | | } |
| | | } |
| | | free(sph->Ylmi); |
| | | } |
| | | |
| | | free(sph); |
| | | return TS_SUCCESS; |
| | | } |
| | | |
| | | |
| | | ts_bool calculateUlmComplex(ts_vesicle *vesicle){ |
| | | ts_int i,j,k,m,l; |
| | | ts_vertex *cvtx; |
| | | ts_coord coord; |
| | | /* set all values to zero */ |
| | | for(i=0;i<vesicle->sphHarmonics->l;i++){ |
| | | for(j=0;j<2*i+1;j++) GSL_SET_COMPLEX(&(vesicle->sphHarmonics->ulmComplex[i][j]),0.0,0.0); |
| | | } |
| | | |
| | | for(k=0;k<vesicle->vlist->n; k++){ |
| | | cvtx=vesicle->vlist->vtx[k]; |
| | | cart2sph(&coord,cvtx->x,cvtx->y,cvtx->z); |
| | | for(i=0;i<vesicle->sphHarmonics->l;i++){ |
| | | for(j=0;j<2*i+1;j++){ |
| | | m=j-i; |
| | | l=i; |
| | | if(m>=0){ |
| | | // fprintf(stderr, "Racunam za l=%d, m=%d\n", l,m); |
| | | vesicle->sphHarmonics->ulmComplex[i][j]=gsl_complex_add(vesicle->sphHarmonics->ulmComplex[i][j], gsl_complex_conjugate(gsl_complex_mul_real(gsl_complex_polar(1.0,(ts_double)m*coord.e2),cvtx->solAngle*cvtx->relR*gsl_sf_legendre_sphPlm(l,m,cos(coord.e3)))) ); |
| | | } else { |
| | | // fprintf(stderr, "Racunam za l=%d, abs(m=%d)\n", l,m); |
| | | vesicle->sphHarmonics->ulmComplex[i][j]=gsl_complex_add(vesicle->sphHarmonics->ulmComplex[i][j], gsl_complex_conjugate(gsl_complex_mul_real(gsl_complex_polar(1.0,(ts_double)m*coord.e2),cvtx->solAngle*cvtx->relR*pow(-1,m)*gsl_sf_legendre_sphPlm(l,-m,cos(coord.e3)))) ); |
| | | |
| | | } |
| | | } |
| | | } |
| | | } |
| | | return TS_SUCCESS; |
| | | } |
| | | |
| | | ts_bool storeUlmComplex2(ts_vesicle *vesicle){ |
| | | |
| | | ts_spharm *sph=vesicle->sphHarmonics; |
| | | ts_int i,j; |
| | | for(i=0;i<sph->l;i++){ |
| | | for(j=0;j<2*i+1;j++){ |
| | | sph->sumUlm2[i][j]+=gsl_complex_abs2(sph->ulmComplex[i][j]); |
| | | } |
| | | } |
| | | sph->N++; |
| | | return TS_SUCCESS; |
| | | } |
| | | |
| | | |
| | | ts_double calculateKc(ts_vesicle *vesicle, ts_int lmin, ts_int lmax){ |
| | | ts_int min=lmin; |
| | | ts_int max=lmax; //vesicle->sphHarmonics->l-3; |
| | | ts_long i,j; |
| | | ts_double retval, bval; |
| | | gsl_matrix *A=gsl_matrix_alloc(max-min,2); |
| | | gsl_vector *tau=gsl_vector_alloc(2); |
| | | gsl_vector *b=gsl_vector_alloc(max-min); |
| | | gsl_vector *x=gsl_vector_alloc(2); |
| | | gsl_vector *res=gsl_vector_alloc(max-min); |
| | | |
| | | //solving (A^T*A)*x=A^T*b |
| | | //fill the data for matrix A and vector b |
| | | for(i=min;i<max;i++){ |
| | | gsl_matrix_set(A, i-min,0,(ts_double)((i-1)*(i+2))); |
| | | gsl_matrix_set(A, i-min,1,(ts_double)((i-1)*(i+2)*(i+1)*i)); |
| | | // fprintf(stderr,"%e %e\n", gsl_matrix_get(A,i-min,0), gsl_matrix_get(A,i-min,1)); |
| | | bval=0.0; |
| | | //average for m from 0..l (only positive m's) |
| | | for(j=0;j<=i;j++){ |
| | | bval+=vesicle->sphHarmonics->sumUlm2[i][(j+i)]; |
| | | } |
| | | bval=bval/(ts_double)vesicle->sphHarmonics->N/(ts_double)(i+1); |
| | | |
| | | gsl_vector_set(b,i-min,1.0/bval); |
| | | // fprintf(stderr,"%e\n", 1.0/gsl_vector_get(b,i-min)); |
| | | } |
| | | // fprintf(stderr,"b[2]=%e\n",gsl_vector_get(b,1)); |
| | | gsl_linalg_QR_decomp(A,tau); |
| | | gsl_linalg_QR_lssolve(A,tau,b,x,res); |
| | | // fprintf(stderr,"kc=%e\n",gsl_vector_get(x,1)); |
| | | retval=gsl_vector_get(x,1); |
| | | gsl_matrix_free(A); |
| | | gsl_vector_free(tau); |
| | | gsl_vector_free(b); |
| | | gsl_vector_free(x); |
| | | gsl_vector_free(res); |
| | | |
| | | return retval; |
| | | } |