| | |
| | | #include "vertexmove.h" |
| | | #include "bondflip.h" |
| | | #include "frame.h" |
| | | #include "vertex.h" |
| | | #include "io.h" |
| | | ts_bool run_simulation(ts_vesicle *vesicle, ts_uint mcsweeps, ts_uint inititer, ts_uint iterations){ |
| | | ts_uint i, j; |
| | | #include "stats.h" |
| | | #include "sh.h" |
| | | #include "shcomplex.h" |
| | | #include "vesicle.h" |
| | | #include<gsl/gsl_complex.h> |
| | | #include<gsl/gsl_complex_math.h> |
| | | |
| | | |
| | | ts_bool run_simulation(ts_vesicle *vesicle, ts_uint mcsweeps, ts_uint inititer, ts_uint iterations, ts_uint start_iteration){ |
| | | ts_uint i, j,k,l,m; |
| | | ts_double r0,kc1,kc2,kc3,kc4; |
| | | ts_double l1,l2,l3,volume=0.0,area=0.0,vmsr,bfsr, vmsrt, bfsrt; |
| | | ts_ulong epochtime; |
| | | FILE *fd1,*fd2=NULL; |
| | | // char filename[255]; |
| | | FILE *fd=fopen("statistics.csv","w"); |
| | | if(fd==NULL){ |
| | | fatal("Cannot open statistics.csv file for writing",1); |
| | | } |
| | | fprintf(fd, "Epoch OuterLoop VertexMoveSucessRate BondFlipSuccessRate Volume Area lamdba1 lambda2 lambda3 Kc(2-9) Kc(6-9) Kc(2-end) Kc(3-6)\n"); |
| | | |
| | | if(vesicle->sphHarmonics!=NULL){ |
| | | fd2=fopen("ulm2.csv","w"); |
| | | if(fd2==NULL){ |
| | | fatal("Cannot open ulm2.csv file for writing",1); |
| | | } |
| | | fprintf(fd2, "Timestep u_00^2 u_10^2 u_11^2 u_20^2 ...\n"); |
| | | |
| | | } |
| | | |
| | | /* RANDOM SEED SET BY CURRENT TIME */ |
| | | epochtime=get_epoch(); |
| | | srand48(epochtime); |
| | | |
| | | centermass(vesicle); |
| | | cell_occupation(vesicle); |
| | | ts_fprintf(stdout, "Starting simulation (first %d x %d MC sweeps will not be recorded on disk)\n", inititer, mcsweeps); |
| | | for(i=0;i<inititer+iterations;i++){ |
| | | vesicle_volume(vesicle); //needed for constant volume at this moment |
| | | if(start_iteration<inititer) ts_fprintf(stdout, "Starting simulation (first %d x %d MC sweeps will not be recorded on disk)\n", inititer, mcsweeps); |
| | | for(i=start_iteration;i<inititer+iterations;i++){ |
| | | vmsr=0.0; |
| | | bfsr=0.0; |
| | | /* vesicle_volume(vesicle); |
| | | fprintf(stderr,"Volume before TS=%1.16e\n", vesicle->volume); */ |
| | | for(j=0;j<mcsweeps;j++){ |
| | | single_timestep(vesicle); |
| | | single_timestep(vesicle, &vmsrt, &bfsrt); |
| | | vmsr+=vmsrt; |
| | | bfsr+=bfsrt; |
| | | } |
| | | /* |
| | | vesicle_volume(vesicle); |
| | | fprintf(stderr,"Volume after TS=%1.16e\n", vesicle->volume); */ |
| | | vmsr/=(ts_double)mcsweeps; |
| | | bfsr/=(ts_double)mcsweeps; |
| | | centermass(vesicle); |
| | | cell_occupation(vesicle); |
| | | if(i>inititer){ |
| | | ts_fprintf(stdout,"Done %d out of %d iterations (x %d MC sweeps).\n",i+1,inititer+iterations,mcsweeps); |
| | | dump_state(vesicle,i); |
| | | if(i>=inititer){ |
| | | write_vertex_xml_file(vesicle,i-inititer); |
| | | write_master_xml_file("test.pvd"); |
| | | epochtime=get_epoch(); |
| | | gyration_eigen(vesicle, &l1, &l2, &l3); |
| | | vesicle_volume(vesicle); //calculates just volume. Area is not added to ts_vesicle yet! |
| | | get_area_volume(vesicle, &area,&volume); //that's why I must recalculate area (and volume for no particular reason). |
| | | r0=getR0(vesicle); |
| | | if(vesicle->sphHarmonics!=NULL){ |
| | | preparationSh(vesicle,r0); |
| | | //calculateYlmi(vesicle); |
| | | calculateUlmComplex(vesicle); |
| | | storeUlmComplex2(vesicle); |
| | | saveAvgUlm2(vesicle); |
| | | kc1=calculateKc(vesicle, 2,9); |
| | | kc2=calculateKc(vesicle, 6,9); |
| | | kc3=calculateKc(vesicle, 2,vesicle->sphHarmonics->l); |
| | | kc4=calculateKc(vesicle, 3,6); |
| | | |
| | | fd1=fopen("state.dat","w"); |
| | | fprintf(fd1,"%e %e\n",vesicle->volume, getR0(vesicle)); |
| | | for(k=0;k<vesicle->vlist->n;k++){ |
| | | fprintf(fd1,"%e %e %e %e %e\n", |
| | | vesicle->vlist->vtx[k]->x, |
| | | vesicle->vlist->vtx[k]->y, |
| | | vesicle->vlist->vtx[k]->z, |
| | | vesicle->vlist->vtx[k]->solAngle, |
| | | vesicle->vlist->vtx[k]->relR |
| | | ); |
| | | } |
| | | fclose(fd1); |
| | | |
| | | fprintf(fd2,"%u ", i); |
| | | for(l=0;l<vesicle->sphHarmonics->l;l++){ |
| | | for(m=l;m<2*l+1;m++){ |
| | | fprintf(fd2,"%e ", gsl_complex_abs2(vesicle->sphHarmonics->ulmComplex[l][m]) ); |
| | | } |
| | | } |
| | | fprintf(fd2,"\n"); |
| | | |
| | | fflush(fd2); |
| | | |
| | | } |
| | | |
| | | fprintf(fd, "%lu %u %e %e %1.16e %1.16e %1.16e %1.16e %1.16e %1.16e %1.16e %1.16e %1.16e\n",epochtime,i,vmsr,bfsr,volume, area,l1,l2,l3,kc1, kc2, kc3,kc4); |
| | | |
| | | fflush(fd); |
| | | // sprintf(filename,"timestep-%05d.pov",i-inititer); |
| | | // write_pov_file(vesicle,filename); |
| | | } |
| | | } |
| | | fclose(fd); |
| | | if(fd2!=NULL) fclose(fd2); |
| | | return TS_SUCCESS; |
| | | } |
| | | |
| | | ts_bool single_timestep(ts_vesicle *vesicle){ |
| | | ts_bool single_timestep(ts_vesicle *vesicle,ts_double *vmsr, ts_double *bfsr){ |
| | | // vesicle_volume(vesicle); |
| | | // fprintf(stderr,"Volume before TS=%1.16e\n", vesicle->volume); |
| | | ts_bool retval; |
| | | ts_double rnvec[3]; |
| | | ts_uint i, b; |
| | | ts_uint i,j, b; |
| | | ts_uint vmsrcnt=0; |
| | | for(i=0;i<vesicle->vlist->n;i++){ |
| | | rnvec[0]=drand48(); |
| | | rnvec[1]=drand48(); |
| | | rnvec[2]=drand48(); |
| | | vertex_taint(vesicle->vlist->vtx[i],1); |
| | | // ts_fprintf(stdout, "Vertex %d should be tainted, level=%d.\n", i, vesicle->vlist->vtx[i]->locked); |
| | | if(vertex_tainted(vesicle->vlist->vtx[i],1,1)){ |
| | | ts_fprintf(stdout, "Vertex %d tainted, level=%d. Waiting....\n", i, vesicle->vlist->vtx[i]->locked); |
| | | while(vertex_tainted(vesicle->vlist->vtx[i],1,1)); |
| | | } |
| | | retval=single_verticle_timestep(vesicle,vesicle->vlist->vtx[i],rnvec); |
| | | vertex_untaint(vesicle->vlist->vtx[i],1); |
| | | // ts_fprintf(stdout, "Vertex %d should be untainted, level=%d.\n", i, vesicle->vlist->vtx[i]->locked); |
| | | if(retval==TS_SUCCESS) vmsrcnt++; |
| | | } |
| | | |
| | | // ts_int cnt=0; |
| | | for(i=0;i<vesicle->vlist->n;i++){ |
| | | //why is rnvec needed in bondflip? |
| | | /* rnvec[0]=drand48(); |
| | | rnvec[1]=drand48(); |
| | | rnvec[2]=drand48(); |
| | | */ |
| | | ts_int bfsrcnt=0; |
| | | for(i=0;i<3*vesicle->vlist->n;i++){ |
| | | b=rand() % vesicle->blist->n; |
| | | //find a bond and return a pointer to a bond... |
| | | //call single_bondflip_timestep... |
| | | retval=single_bondflip_timestep(vesicle,vesicle->blist->bond[b],rnvec); |
| | | // if(retval==TS_SUCCESS) cnt++; |
| | | } |
| | | // printf("Bondflip success rate in one sweep: %d/%d=%e\n", cnt,vesicle->blist->n,(double)cnt/(double)vesicle->blist->n); |
| | | if(retval); |
| | | // b++; retval=TS_FAIL; |
| | | if(retval==TS_SUCCESS) bfsrcnt++; |
| | | } |
| | | |
| | | for(i=0;i<vesicle->poly_list->n;i++){ |
| | | for(j=0;j<vesicle->poly_list->poly[i]->vlist->n;j++){ |
| | | rnvec[0]=drand48(); |
| | | rnvec[1]=drand48(); |
| | | rnvec[2]=drand48(); |
| | | retval=single_poly_vertex_move(vesicle,vesicle->poly_list->poly[i],vesicle->poly_list->poly[i]->vlist->vtx[j],rnvec); |
| | | } |
| | | } |
| | | |
| | | |
| | | for(i=0;i<vesicle->filament_list->n;i++){ |
| | | for(j=0;j<vesicle->filament_list->poly[i]->vlist->n;j++){ |
| | | rnvec[0]=drand48(); |
| | | rnvec[1]=drand48(); |
| | | rnvec[2]=drand48(); |
| | | retval=single_filament_vertex_move(vesicle,vesicle->filament_list->poly[i],vesicle->filament_list->poly[i]->vlist->vtx[j],rnvec); |
| | | } |
| | | } |
| | | |
| | | |
| | | // printf("Bondflip success rate in one sweep: %d/%d=%e\n", cnt,3*vesicle->blist->n,(double)cnt/(double)vesicle->blist->n/3.0); |
| | | *vmsr=(ts_double)vmsrcnt/(ts_double)vesicle->vlist->n; |
| | | *bfsr=(ts_double)bfsrcnt/(ts_double)vesicle->vlist->n/3.0; |
| | | // vesicle_volume(vesicle); |
| | | // fprintf(stderr,"Volume after TS=%1.16e\n", vesicle->volume); |
| | | return TS_SUCCESS; |
| | | } |
| | | |