| | |
| | | ts_vertex *it, *k, *kp,*km; |
| | | ts_triangle *lm=NULL, *lp=NULL; |
| | | ts_double sumnorm; |
| | | ts_double temp_length; |
| | | |
| | | |
| | | ts_double Se11, Se21, Se22, Se31, Se32, Se33; |
| | |
| | | ts_double Sv[3][3]={{0,0,0},{0,0,0},{0,0,0}}; |
| | | // Here edge vector is calculated |
| | | // fprintf(stderr, "Vertex has neighbours=%d\n", vtx->neigh_no); |
| | | for(jj=0;jj<vtx->neigh_no;jj++){ |
| | | edge_vector_x[jj]=vtx->neigh[jj]->x-vtx->x; |
| | | edge_vector_y[jj]=vtx->neigh[jj]->y-vtx->y; |
| | | edge_vector_z[jj]=vtx->neigh[jj]->z-vtx->z; |
| | | |
| | | |
| | | |
| | | |
| | | Av=0; |
| | | for(i=0; i<vtx->tristar_no; i++){ |
| | | vertex_normal_x=vertex_normal_x + vtx->tristar[i]->xnorm*vtx->tristar[i]->area; |
| | |
| | | vertex_normal_z=vertex_normal_z + vtx->tristar[i]->znorm*vtx->tristar[i]->area; |
| | | Av+=vtx->tristar[i]->area/3; |
| | | } |
| | | temp_length=sqrt(pow(vertex_normal_x,2)+pow(vertex_normal_y,2)+pow(vertex_normal_z,2)); |
| | | vertex_normal_x=vertex_normal_x/temp_length; |
| | | vertex_normal_y=vertex_normal_y/temp_length; |
| | | vertex_normal_z=vertex_normal_z/temp_length; |
| | | |
| | | Pv11=1-vertex_normal_x*vertex_normal_x; |
| | | Pv22=1-vertex_normal_y*vertex_normal_y; |
| | |
| | | Pv31=vertex_normal_x*vertex_normal_z; |
| | | Pv32=vertex_normal_y*vertex_normal_z; |
| | | |
| | | |
| | | |
| | | |
| | | for(jj=0;jj<vtx->neigh_no;jj++){ |
| | | edge_vector_x[jj]=vtx->neigh[jj]->x-vtx->x; |
| | | edge_vector_y[jj]=vtx->neigh[jj]->y-vtx->y; |
| | | edge_vector_z[jj]=vtx->neigh[jj]->z-vtx->z; |
| | | |
| | | //Here we calculate normalized edge vector |
| | | |
| | | temp_length=sqrt(edge_vector_x[jj]*edge_vector_x[jj]+edge_vector_y[jj]*edge_vector_y[jj]+edge_vector_z[jj]*edge_vector_z[jj]); |
| | | edge_vector_x[jj]=edge_vector_x[jj]/temp_length; |
| | | edge_vector_y[jj]=edge_vector_y[jj]/temp_length; |
| | | edge_vector_z[jj]=edge_vector_z[jj]/temp_length; |
| | | |
| | | //end normalization |
| | | // printf("(%f %f %f)\n", vertex_normal_x, vertex_normal_y, vertex_normal_z); |
| | | |
| | | |
| | |
| | | } |
| | | if(lm==NULL || lp==NULL) fatal("energy_vertex: Cannot find triangles lm and lp!",233); |
| | | |
| | | //Triangle normals are NORMALIZED! |
| | | |
| | | sumnorm=sqrt( pow((lm->xnorm + lp->xnorm),2) + pow((lm->ynorm + lp->ynorm), 2) + pow((lm->znorm + lp->znorm), 2)); |
| | | |
| | | edge_normal_x[jj]=(lm->xnorm+ lp->xnorm)/sumnorm; |
| | |
| | | |
| | | |
| | | mprod[jj]=it->x*(k->y*edge_vector_z[jj]-edge_vector_y[jj]*k->z)-it->y*(k->x*edge_vector_z[jj]-k->z*edge_vector_x[jj])+it->z*(k->x*edge_vector_y[jj]-k->y*edge_vector_x[jj]); |
| | | phi[jj]=copysign(acos(lm->xnorm*lp->xnorm+lm->ynorm*lp->ynorm+lm->znorm*lp->znorm),mprod[jj])+M_PI; |
| | | he[jj]=2.0*sqrt( pow((edge_vector_x[jj]*2),2) + pow((edge_vector_y[jj]*2), 2) + pow((edge_vector_z[jj]*2), 2))*cos(phi[jj]/2.0); |
| | | |
| | | phi[jj]=copysign(acos(lm->xnorm*lp->xnorm+lm->ynorm*lp->ynorm+lm->znorm*lp->znorm-1e-8),mprod[jj])+M_PI; |
| | | // printf("ACOS arg=%e\n", lm->xnorm*lp->xnorm+lm->ynorm*lp->ynorm+lm->znorm*lp->znorm); |
| | | //he was multiplied with 2 before... |
| | | he[jj]=sqrt( pow((edge_vector_x[jj]),2) + pow((edge_vector_y[jj]), 2) + pow((edge_vector_z[jj]), 2))*cos(phi[jj]/2.0); |
| | | // printf("phi[%d]=%f\n", jj,phi[jj]); |
| | | |
| | | Se11=edge_binormal_x[jj]*edge_binormal_x[jj]*he[jj]; |
| | | Se21=edge_binormal_x[jj]*edge_binormal_y[jj]*he[jj]; |
| | |
| | | Sv[2][2]+=We_Av* (Pv31*(Pv31*Se11+Pv32*Se21+Pv33*Se31)+Pv32*(Pv31*Se21+Pv32*Se22+Pv33*Se32)+Pv33*(Pv31*Se31+Pv32*Se32+Pv33*Se33)); |
| | | // printf("(%f %f %f); (%f %f %f); (%f %f %f)\n", edge_vector_x[jj], edge_vector_y[jj], edge_vector_z[jj], edge_normal_x[jj], edge_normal_y[jj], edge_normal_z[jj], edge_binormal_x[jj], edge_binormal_y[jj], edge_binormal_z[jj]); |
| | | |
| | | } |
| | | } // END FOR JJ |
| | | |
| | | gsl_matrix_set(gsl_Sv, 0,0, Sv[0][0]); |
| | | gsl_matrix_set(gsl_Sv, 0,1, Sv[0][1]); |
| | |
| | | gsl_matrix_set(gsl_Sv, 2,1, Sv[2][1]); |
| | | gsl_matrix_set(gsl_Sv, 2,2, Sv[2][2]); |
| | | |
| | | // printf("Se= %f, %f, %f\n %f, %f, %f\n %f, %f, %f\n", Se11, Se21, Se31, Se21, Se22, Se32, Se31, Se32, Se33); |
| | | // printf("Pv= %f, %f, %f\n %f, %f, %f\n %f, %f, %f\n", Pv11, Pv21, Pv31, Pv21, Pv22, Pv32, Pv31, Pv32, Pv33); |
| | | printf("Sv= %f, %f, %f\n %f, %f, %f\n %f, %f, %f\n", Sv[0][0], Sv[0][1], Sv[0][2], Sv[1][0], Sv[1][1], Sv[1][2], Sv[2][0], Sv[2][1], Sv[2][2]); |
| | | |
| | | gsl_eigen_nonsymm_params(0, 1, workspace); |
| | | gsl_eigen_nonsymm(gsl_Sv, Sv_eigen, workspace); |
| | | |
| | | printf("Eigenvalues: %f+ i%f, %f+i%f, %f+i%f\n", |
| | | GSL_REAL(gsl_vector_complex_get(Sv_eigen, 0)), GSL_IMAG(gsl_vector_complex_get(Sv_eigen, 0)), |
| | | GSL_REAL(gsl_vector_complex_get(Sv_eigen, 1)), GSL_IMAG(gsl_vector_complex_get(Sv_eigen, 1)), |
| | | GSL_REAL(gsl_vector_complex_get(Sv_eigen, 2)), GSL_IMAG(gsl_vector_complex_get(Sv_eigen, 2)) |
| | | printf("Eigenvalues: %f, %f, %f\n", |
| | | GSL_REAL(gsl_vector_complex_get(Sv_eigen, 0)), |
| | | GSL_REAL(gsl_vector_complex_get(Sv_eigen, 1)), |
| | | GSL_REAL(gsl_vector_complex_get(Sv_eigen, 2)) |
| | | ); |
| | | vtx->energy=0.0; |
| | | |