| | |
| | | import cv2 |
| | | import numpy as np |
| | | from skimage import morphology, img_as_ubyte |
| | | from sklearn import svm |
| | | from sklearn.externals import joblib |
| | | |
| | | |
| | | """ |
| | |
| | | def kernel(x, y): |
| | | return np.ones((x, y), np.uint8) |
| | | |
| | | def sid_compare(sid_no, sid_mask): |
| | | for s,es in zip(sid_mask,sid_no): |
| | | if s!='x' and s!=es: |
| | | return False |
| | | return True |
| | | |
| | | |
| | | |
| | | def segment_by_contours(image, sorted_ctrs, classifier): |
| | | sid_no = "" |
| | |
| | | return sid_no |
| | | |
| | | |
| | | def segment_by_sid_len(image,sid_len, classifier): |
| | | sid_no="" |
| | | #find biggest block of pixels |
| | | |
| | | image1=cv2.morphologyEx(image,cv2.MORPH_DILATE, kernel(5,25), iterations=3) |
| | | cv2.imwrite("sidblock1.png",image1) |
| | | def segment_by_sid_len(image, original_image, sid_mask, classifier): |
| | | sid_no = "" |
| | | sid_len = len(sid_mask) |
| | | if sid_mask[0] == "1": |
| | | move_left = 45 |
| | | elif sid_mask[0] == "x": |
| | | move_left = 55 |
| | | else: |
| | | move_left = 0 |
| | | # Remove noise |
| | | image2 = cv2.morphologyEx(original_image, cv2.MORPH_OPEN, kernel(2, 2), iterations=7) |
| | | # find biggest block of pixels |
| | | image1 = cv2.morphologyEx(image2, cv2.MORPH_DILATE, kernel(5, 25), iterations=4) |
| | | image1=img_as_ubyte(image1>50) |
| | | cv2.imwrite("sidblock1.png", image1) |
| | | im2, ctrs, hier = cv2.findContours( |
| | | image1.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE |
| | | ) |
| | | sorted_ctrs = sorted(ctrs, key=lambda ctr: cv2.contourArea(ctr)) #get bigges contour |
| | | sorted_ctrs = sorted( |
| | | ctrs, key=lambda ctr: cv2.contourArea(ctr) |
| | | ) # get bigges contour |
| | | x, y, w, h = cv2.boundingRect(sorted_ctrs[-1]) |
| | | image=image[y:y+h,x+25:x+w-25] |
| | | cv2.imwrite("sidblock2.png",image) |
| | | image = image[y : y + h, x + 25 - move_left : x + w - 40] #+25,-25 |
| | | cv2.imwrite("sidblock2.png", image) |
| | | imgHeight, imgWidth = image.shape[0:2] |
| | | numWidth=int(imgWidth/(sid_len)) |
| | | for i in range(0,sid_len): |
| | | num=image[:,i*numWidth:(i+1)*numWidth] |
| | | numWidth = int(imgWidth / (sid_len)) |
| | | for i in range(0, sid_len): |
| | | num = image[:, i * numWidth : (i + 1) * numWidth] |
| | | num = img_as_ubyte(num < 128) |
| | | num = cv2.resize(num, (32, 32)) |
| | | |
| | |
| | | sid_no = sid_no + str(classifier.predict(num.reshape(1, -1) / 255.0)[0]) |
| | | return sid_no |
| | | |
| | | def segment_by_7segments(image,original_image,sid_mask,classifier): |
| | | block_image = cv2.morphologyEx(original_image, cv2.MORPH_CLOSE, kernel(2, 2), iterations=10) |
| | | block_image =img_as_ubyte(block_image<50) |
| | | cv2.imwrite("sid_3rd1.png", block_image) |
| | | template = cv2.imread("template-8.png", 0) |
| | | w, h = template.shape[::-1] |
| | | res = cv2.matchTemplate(block_image, template, cv2.TM_CCOEFF_NORMED) |
| | | loc = np.where(res >= 0.75) |
| | | cimg = cv2.cvtColor(image, cv2.COLOR_GRAY2BGR) |
| | | loc_filtered_x=[] |
| | | loc_filtered_y=[] |
| | | for pt in zip(*loc[::-1]): |
| | | pt=(pt[0]-10,pt[1]-10) |
| | | loc_filtered_y.append(pt[1]) |
| | | loc_filtered_x.append(pt[0]) |
| | | # points.append(pt) |
| | | #filter points |
| | | if(len(loc_filtered_x)==0): |
| | | return "" |
| | | loc_filtered_x, loc_filtered_y = zip( |
| | | *sorted(zip(loc_filtered_x, loc_filtered_y)) |
| | | ) |
| | | a = np.diff(loc_filtered_x) > int(w/2) |
| | | a = np.append(a, True) |
| | | loc_filtered_x = np.array(loc_filtered_x) |
| | | loc_filtered_y = np.array(loc_filtered_y) |
| | | points = [loc_filtered_y[a], loc_filtered_x[a]] |
| | | for pt in zip(*points[::-1]): |
| | | cv2.rectangle(cimg, pt, (pt[0] + w, pt[1] + h), (0, 255, 255), 2) |
| | | cv2.imwrite("sid_3rd2.png", cimg) |
| | | |
| | | sid_no="" |
| | | for i,pt in enumerate(zip(*points[::-1])): |
| | | num=image[pt[1]:pt[1] + h, pt[0]:pt[0]+w] |
| | | #cv2.imwrite("sid_3no_{}.png".format(i), num) |
| | | num = img_as_ubyte(num < 128) |
| | | try: |
| | | num = cv2.resize(num, (32, 32)) |
| | | except: |
| | | return "" |
| | | cv2.imwrite("sid_3no_{}.png".format(i), num) |
| | | sid_no = sid_no + str(classifier.predict(num.reshape(1, -1) / 255.0)[0]) |
| | | |
| | | return sid_no |
| | | |
| | | def getSID(image, classifier, sid_mask): |
| | | sid_warn = [] |
| | | sid_err=[] |
| | | image = 255 - image |
| | | image_original=image.copy() |
| | | image = img_as_ubyte(image > 100) |
| | | cv2.imwrite("enSID0.png", image) |
| | | # Remove noise |
| | | image = cv2.morphologyEx(image, cv2.MORPH_OPEN, kernel(2, 2), iterations=1) |
| | | image = cv2.morphologyEx(image, cv2.MORPH_OPEN, kernel(2, 2), iterations=3) |
| | | # Closing. Connect non connected parts |
| | | image = cv2.morphologyEx(image, cv2.MORPH_CLOSE, kernel(5, 3), iterations=4) |
| | | # Again noise removal after closing |
| | | |
| | | #image = cv2.morphologyEx(image, cv2.MORPH_OPEN, kernel(8, 8), iterations=1) |
| | | # image = cv2.morphologyEx(image, cv2.MORPH_OPEN, kernel(8, 8), iterations=1) |
| | | # don't do too much noise removal. |
| | | image = cv2.morphologyEx(image, cv2.MORPH_OPEN, kernel(3, 3), iterations=1) |
| | | |
| | | # Skeletonization |
| | |
| | | # Thining again |
| | | image = img_as_ubyte(morphology.skeletonize(image > 0.5)) |
| | | image = cv2.morphologyEx(image, cv2.MORPH_DILATE, kernel(10, 10)) |
| | | cv2.imwrite("enhancedSID.png",image) |
| | | cv2.imwrite("enhancedSID.png", image) |
| | | im2, ctrs, hier = cv2.findContours( |
| | | image.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE |
| | | ) |
| | | sorted_ctrs = sorted(ctrs, key=lambda ctr: cv2.boundingRect(ctr)[0]) |
| | | |
| | | sid_no = "" |
| | | #sid_len = len(sid_mask) |
| | | #sid_no = segment_by_sid_len(image, sid_len, classifier) |
| | | #if sid_mask is not None: |
| | | print(len(sid_mask),len(sorted_ctrs)) |
| | | #if len(sid_mask)==len(sorted_ctrs): |
| | | sid_no=segment_by_contours(image,sorted_ctrs[1:],classifier) |
| | | print(len(sid_mask), len(sorted_ctrs)) |
| | | sid_no = segment_by_contours( |
| | | image, sorted_ctrs[1:], classifier |
| | | ) # we remove largest contour that surrounds whole image |
| | | print(sid_no) |
| | | if(len(sid_no)!=len(sid_mask)): |
| | | print("Ooops have to find another way") |
| | | sid_no=segment_by_sid_len(image,len(sid_mask),classifier) |
| | | return sid_no |
| | | if len(sid_no) != len(sid_mask) or not sid_compare(sid_no,sid_mask): |
| | | sid_warn.append("Trying second SID algorithm.") |
| | | sid_no = segment_by_7segments(image, image_original, sid_mask, classifier) |
| | | print(sid_no) |
| | | if(len(sid_no))!=len(sid_mask): |
| | | sid_no = segment_by_sid_len(image, image_original, sid_mask, classifier) |
| | | sid_warn.append("Trying third SID algorithm.") |
| | | |
| | | |
| | | if not sid_compare(sid_no, sid_mask): |
| | | sid_err=['Wrong SID!'] |
| | | |
| | | return (sid_no, sid_err, sid_warn) |