From d5c694ac711ca3b434bf16bd920b90d1a7e758c4 Mon Sep 17 00:00:00 2001 From: Samo Penic <samo.penic@gmail.com> Date: Sat, 17 Nov 2018 09:57:31 +0000 Subject: [PATCH] Improving the robustness of all three algorithms. --- sid_process.py | 126 ++++++++++++++++++++++++++++++++--------- 1 files changed, 98 insertions(+), 28 deletions(-) diff --git a/sid_process.py b/sid_process.py index 48326c0..1f93d3c 100644 --- a/sid_process.py +++ b/sid_process.py @@ -1,8 +1,6 @@ import cv2 import numpy as np from skimage import morphology, img_as_ubyte -from sklearn import svm -from sklearn.externals import joblib """ @@ -59,6 +57,13 @@ def kernel(x, y): return np.ones((x, y), np.uint8) +def sid_compare(sid_no, sid_mask): + for s,es in zip(sid_mask,sid_no): + if s!='x' and s!=es: + return False + return True + + def segment_by_contours(image, sorted_ctrs, classifier): sid_no = "" @@ -79,23 +84,34 @@ return sid_no -def segment_by_sid_len(image,sid_len, classifier): - sid_no="" - #find biggest block of pixels - - image1=cv2.morphologyEx(image,cv2.MORPH_DILATE, kernel(5,25), iterations=3) - cv2.imwrite("sidblock1.png",image1) +def segment_by_sid_len(image, original_image, sid_mask, classifier): + sid_no = "" + sid_len = len(sid_mask) + if sid_mask[0] == "1": + move_left = 45 + elif sid_mask[0] == "x": + move_left = 55 + else: + move_left = 0 + # Remove noise + image2 = cv2.morphologyEx(original_image, cv2.MORPH_OPEN, kernel(2, 2), iterations=7) + # find biggest block of pixels + image1 = cv2.morphologyEx(image2, cv2.MORPH_DILATE, kernel(5, 25), iterations=4) + image1=img_as_ubyte(image1>50) + cv2.imwrite("sidblock1.png", image1) im2, ctrs, hier = cv2.findContours( image1.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE ) - sorted_ctrs = sorted(ctrs, key=lambda ctr: cv2.contourArea(ctr)) #get bigges contour + sorted_ctrs = sorted( + ctrs, key=lambda ctr: cv2.contourArea(ctr) + ) # get bigges contour x, y, w, h = cv2.boundingRect(sorted_ctrs[-1]) - image=image[y:y+h,x+25:x+w-25] - cv2.imwrite("sidblock2.png",image) + image = image[y : y + h, x + 25 - move_left : x + w - 40] #+25,-25 + cv2.imwrite("sidblock2.png", image) imgHeight, imgWidth = image.shape[0:2] - numWidth=int(imgWidth/(sid_len)) - for i in range(0,sid_len): - num=image[:,i*numWidth:(i+1)*numWidth] + numWidth = int(imgWidth / (sid_len)) + for i in range(0, sid_len): + num = image[:, i * numWidth : (i + 1) * numWidth] num = img_as_ubyte(num < 128) num = cv2.resize(num, (32, 32)) @@ -104,18 +120,66 @@ sid_no = sid_no + str(classifier.predict(num.reshape(1, -1) / 255.0)[0]) return sid_no +def segment_by_7segments(image,original_image,sid_mask,classifier): + block_image = cv2.morphologyEx(original_image, cv2.MORPH_CLOSE, kernel(2, 2), iterations=10) + block_image =img_as_ubyte(block_image<50) + cv2.imwrite("sid_3rd1.png", block_image) + template = cv2.imread("template-8.png", 0) + w, h = template.shape[::-1] + res = cv2.matchTemplate(block_image, template, cv2.TM_CCOEFF_NORMED) + loc = np.where(res >= 0.75) + cimg = cv2.cvtColor(image, cv2.COLOR_GRAY2BGR) + loc_filtered_x=[] + loc_filtered_y=[] + for pt in zip(*loc[::-1]): + pt=(pt[0]-10,pt[1]-10) + loc_filtered_y.append(pt[1]) + loc_filtered_x.append(pt[0]) +# points.append(pt) + #filter points + if(len(loc_filtered_x)==0): + return "" + loc_filtered_x, loc_filtered_y = zip( + *sorted(zip(loc_filtered_x, loc_filtered_y)) + ) + a = np.diff(loc_filtered_x) > int(w/2) + a = np.append(a, True) + loc_filtered_x = np.array(loc_filtered_x) + loc_filtered_y = np.array(loc_filtered_y) + points = [loc_filtered_y[a], loc_filtered_x[a]] + for pt in zip(*points[::-1]): + cv2.rectangle(cimg, pt, (pt[0] + w, pt[1] + h), (0, 255, 255), 2) + cv2.imwrite("sid_3rd2.png", cimg) + + sid_no="" + for i,pt in enumerate(zip(*points[::-1])): + num=image[pt[1]:pt[1] + h, pt[0]:pt[0]+w] + #cv2.imwrite("sid_3no_{}.png".format(i), num) + num = img_as_ubyte(num < 128) + try: + num = cv2.resize(num, (32, 32)) + except: + return "" + cv2.imwrite("sid_3no_{}.png".format(i), num) + sid_no = sid_no + str(classifier.predict(num.reshape(1, -1) / 255.0)[0]) + + return sid_no def getSID(image, classifier, sid_mask): + sid_warn = [] + sid_err=[] image = 255 - image + image_original=image.copy() image = img_as_ubyte(image > 100) cv2.imwrite("enSID0.png", image) # Remove noise - image = cv2.morphologyEx(image, cv2.MORPH_OPEN, kernel(2, 2), iterations=1) + image = cv2.morphologyEx(image, cv2.MORPH_OPEN, kernel(2, 2), iterations=3) # Closing. Connect non connected parts image = cv2.morphologyEx(image, cv2.MORPH_CLOSE, kernel(5, 3), iterations=4) # Again noise removal after closing - #image = cv2.morphologyEx(image, cv2.MORPH_OPEN, kernel(8, 8), iterations=1) + # image = cv2.morphologyEx(image, cv2.MORPH_OPEN, kernel(8, 8), iterations=1) + # don't do too much noise removal. image = cv2.morphologyEx(image, cv2.MORPH_OPEN, kernel(3, 3), iterations=1) # Skeletonization @@ -129,21 +193,27 @@ # Thining again image = img_as_ubyte(morphology.skeletonize(image > 0.5)) image = cv2.morphologyEx(image, cv2.MORPH_DILATE, kernel(10, 10)) - cv2.imwrite("enhancedSID.png",image) + cv2.imwrite("enhancedSID.png", image) im2, ctrs, hier = cv2.findContours( image.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE ) sorted_ctrs = sorted(ctrs, key=lambda ctr: cv2.boundingRect(ctr)[0]) - sid_no = "" - #sid_len = len(sid_mask) - #sid_no = segment_by_sid_len(image, sid_len, classifier) - #if sid_mask is not None: - print(len(sid_mask),len(sorted_ctrs)) - #if len(sid_mask)==len(sorted_ctrs): - sid_no=segment_by_contours(image,sorted_ctrs[1:],classifier) + print(len(sid_mask), len(sorted_ctrs)) + sid_no = segment_by_contours( + image, sorted_ctrs[1:], classifier + ) # we remove largest contour that surrounds whole image print(sid_no) - if(len(sid_no)!=len(sid_mask)): - print("Ooops have to find another way") - sid_no=segment_by_sid_len(image,len(sid_mask),classifier) - return sid_no + if len(sid_no) != len(sid_mask) or not sid_compare(sid_no,sid_mask): + sid_warn.append("Trying second SID algorithm.") + sid_no = segment_by_7segments(image, image_original, sid_mask, classifier) + print(sid_no) + if(len(sid_no))!=len(sid_mask): + sid_no = segment_by_sid_len(image, image_original, sid_mask, classifier) + sid_warn.append("Trying third SID algorithm.") + + + if not sid_compare(sid_no, sid_mask): + sid_err=['Wrong SID!'] + + return (sid_no, sid_err, sid_warn) -- Gitblit v1.9.3