From d5c694ac711ca3b434bf16bd920b90d1a7e758c4 Mon Sep 17 00:00:00 2001
From: Samo Penic <samo.penic@gmail.com>
Date: Sat, 17 Nov 2018 09:57:31 +0000
Subject: [PATCH] Improving the robustness of all three algorithms.

---
 sid_process.py |  126 ++++++++++++++++++++++++++++++++---------
 1 files changed, 98 insertions(+), 28 deletions(-)

diff --git a/sid_process.py b/sid_process.py
index 48326c0..1f93d3c 100644
--- a/sid_process.py
+++ b/sid_process.py
@@ -1,8 +1,6 @@
 import cv2
 import numpy as np
 from skimage import morphology, img_as_ubyte
-from sklearn import svm
-from sklearn.externals import joblib
 
 
 """
@@ -59,6 +57,13 @@
 def kernel(x, y):
     return np.ones((x, y), np.uint8)
 
+def sid_compare(sid_no, sid_mask):
+    for s,es in zip(sid_mask,sid_no):
+        if s!='x' and s!=es:
+            return False
+    return True
+
+
 
 def segment_by_contours(image, sorted_ctrs, classifier):
     sid_no = ""
@@ -79,23 +84,34 @@
     return sid_no
 
 
-def segment_by_sid_len(image,sid_len, classifier):
-    sid_no=""
-    #find biggest block of pixels
-
-    image1=cv2.morphologyEx(image,cv2.MORPH_DILATE, kernel(5,25), iterations=3)
-    cv2.imwrite("sidblock1.png",image1)
+def segment_by_sid_len(image, original_image, sid_mask, classifier):
+    sid_no = ""
+    sid_len = len(sid_mask)
+    if sid_mask[0] == "1":
+        move_left = 45
+    elif sid_mask[0] == "x":
+        move_left = 55
+    else:
+        move_left = 0
+        # Remove noise
+    image2 = cv2.morphologyEx(original_image, cv2.MORPH_OPEN, kernel(2, 2), iterations=7)
+    # find biggest block of pixels
+    image1 = cv2.morphologyEx(image2, cv2.MORPH_DILATE, kernel(5, 25), iterations=4)
+    image1=img_as_ubyte(image1>50)
+    cv2.imwrite("sidblock1.png", image1)
     im2, ctrs, hier = cv2.findContours(
         image1.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE
     )
-    sorted_ctrs = sorted(ctrs, key=lambda ctr: cv2.contourArea(ctr)) #get bigges contour
+    sorted_ctrs = sorted(
+        ctrs, key=lambda ctr: cv2.contourArea(ctr)
+    )  # get bigges contour
     x, y, w, h = cv2.boundingRect(sorted_ctrs[-1])
-    image=image[y:y+h,x+25:x+w-25]
-    cv2.imwrite("sidblock2.png",image)
+    image = image[y : y + h, x + 25 - move_left : x + w - 40] #+25,-25
+    cv2.imwrite("sidblock2.png", image)
     imgHeight, imgWidth = image.shape[0:2]
-    numWidth=int(imgWidth/(sid_len))
-    for i in range(0,sid_len):
-        num=image[:,i*numWidth:(i+1)*numWidth]
+    numWidth = int(imgWidth / (sid_len))
+    for i in range(0, sid_len):
+        num = image[:, i * numWidth : (i + 1) * numWidth]
         num = img_as_ubyte(num < 128)
         num = cv2.resize(num, (32, 32))
 
@@ -104,18 +120,66 @@
         sid_no = sid_no + str(classifier.predict(num.reshape(1, -1) / 255.0)[0])
     return sid_no
 
+def segment_by_7segments(image,original_image,sid_mask,classifier):
+    block_image = cv2.morphologyEx(original_image, cv2.MORPH_CLOSE, kernel(2, 2), iterations=10)
+    block_image =img_as_ubyte(block_image<50)
+    cv2.imwrite("sid_3rd1.png", block_image)
+    template = cv2.imread("template-8.png", 0)
+    w, h = template.shape[::-1]
+    res = cv2.matchTemplate(block_image, template, cv2.TM_CCOEFF_NORMED)
+    loc = np.where(res >= 0.75)
+    cimg = cv2.cvtColor(image, cv2.COLOR_GRAY2BGR)
+    loc_filtered_x=[]
+    loc_filtered_y=[]
+    for pt in zip(*loc[::-1]):
+        pt=(pt[0]-10,pt[1]-10)
+        loc_filtered_y.append(pt[1])
+        loc_filtered_x.append(pt[0])
+#        points.append(pt)
+    #filter points
+    if(len(loc_filtered_x)==0):
+        return ""
+    loc_filtered_x, loc_filtered_y = zip(
+                *sorted(zip(loc_filtered_x, loc_filtered_y))
+            )
+    a = np.diff(loc_filtered_x) > int(w/2)
+    a = np.append(a, True)
+    loc_filtered_x = np.array(loc_filtered_x)
+    loc_filtered_y = np.array(loc_filtered_y)
+    points = [loc_filtered_y[a], loc_filtered_x[a]]
+    for pt in zip(*points[::-1]):
+        cv2.rectangle(cimg, pt, (pt[0] + w, pt[1] + h), (0, 255, 255), 2)
+    cv2.imwrite("sid_3rd2.png", cimg)
+
+    sid_no=""
+    for i,pt in enumerate(zip(*points[::-1])):
+        num=image[pt[1]:pt[1] + h, pt[0]:pt[0]+w]
+        #cv2.imwrite("sid_3no_{}.png".format(i), num)
+        num = img_as_ubyte(num < 128)
+        try:
+            num = cv2.resize(num, (32, 32))
+        except:
+            return ""
+        cv2.imwrite("sid_3no_{}.png".format(i), num)
+        sid_no = sid_no + str(classifier.predict(num.reshape(1, -1) / 255.0)[0])
+
+    return sid_no
 
 def getSID(image, classifier, sid_mask):
+    sid_warn = []
+    sid_err=[]
     image = 255 - image
+    image_original=image.copy()
     image = img_as_ubyte(image > 100)
     cv2.imwrite("enSID0.png", image)
     # Remove noise
-    image = cv2.morphologyEx(image, cv2.MORPH_OPEN, kernel(2, 2), iterations=1)
+    image = cv2.morphologyEx(image, cv2.MORPH_OPEN, kernel(2, 2), iterations=3)
     # Closing. Connect non connected parts
     image = cv2.morphologyEx(image, cv2.MORPH_CLOSE, kernel(5, 3), iterations=4)
     # Again noise removal after closing
 
-    #image = cv2.morphologyEx(image, cv2.MORPH_OPEN, kernel(8, 8), iterations=1)
+    # image = cv2.morphologyEx(image, cv2.MORPH_OPEN, kernel(8, 8), iterations=1)
+    # don't do too much noise removal.
     image = cv2.morphologyEx(image, cv2.MORPH_OPEN, kernel(3, 3), iterations=1)
 
     # Skeletonization
@@ -129,21 +193,27 @@
     # Thining again
     image = img_as_ubyte(morphology.skeletonize(image > 0.5))
     image = cv2.morphologyEx(image, cv2.MORPH_DILATE, kernel(10, 10))
-    cv2.imwrite("enhancedSID.png",image)
+    cv2.imwrite("enhancedSID.png", image)
     im2, ctrs, hier = cv2.findContours(
         image.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE
     )
     sorted_ctrs = sorted(ctrs, key=lambda ctr: cv2.boundingRect(ctr)[0])
 
-    sid_no = ""
-    #sid_len = len(sid_mask)
-    #sid_no = segment_by_sid_len(image, sid_len, classifier)
-    #if sid_mask is not None:
-    print(len(sid_mask),len(sorted_ctrs))
-    #if len(sid_mask)==len(sorted_ctrs):
-    sid_no=segment_by_contours(image,sorted_ctrs[1:],classifier)
+    print(len(sid_mask), len(sorted_ctrs))
+    sid_no = segment_by_contours(
+        image, sorted_ctrs[1:], classifier
+    )  # we remove largest contour that surrounds whole image
     print(sid_no)
-    if(len(sid_no)!=len(sid_mask)):
-        print("Ooops have to find another way")
-        sid_no=segment_by_sid_len(image,len(sid_mask),classifier)
-    return sid_no
+    if len(sid_no) != len(sid_mask) or not sid_compare(sid_no,sid_mask):
+        sid_warn.append("Trying second SID algorithm.")
+        sid_no = segment_by_7segments(image, image_original, sid_mask, classifier)
+    print(sid_no)
+    if(len(sid_no))!=len(sid_mask):
+        sid_no = segment_by_sid_len(image, image_original, sid_mask, classifier)
+        sid_warn.append("Trying third SID algorithm.")
+
+
+    if not sid_compare(sid_no, sid_mask):
+            sid_err=['Wrong SID!']
+
+    return (sid_no, sid_err, sid_warn)

--
Gitblit v1.9.3