#include<stdlib.h>
|
#include<stdio.h>
|
#include<string.h>
|
#include<math.h>
|
#include "general.h"
|
#include "constvol.h"
|
#include "triangle.h"
|
#include "energy.h"
|
#include "vertex.h"
|
#include "cell.h"
|
|
ts_bool constvolume(ts_vesicle *vesicle, ts_vertex *vtx_avoid, ts_double Vol, ts_double *retEnergy, ts_vertex **vtx_moved_retval, ts_vertex **vtx_backup){
|
ts_vertex *vtx_moved;
|
ts_uint vtxind,i,j;
|
ts_uint Ntries=20;
|
ts_vertex *backupvtx;
|
ts_double Rv, dh, dvol, voldiff, oenergy,delta_energy;
|
backupvtx=(ts_vertex *)calloc(sizeof(ts_vertex),10);
|
ts_double l0 = (1.0 + sqrt(vesicle->dmax))/2.0; //make this a global constant if necessary
|
for(i=0;i<Ntries;i++){
|
vtxind=rand() % vesicle->vlist->n;
|
vtx_moved=vesicle->vlist->vtx[vtxind];
|
if(vtx_moved==vtx_avoid) continue;
|
|
for(j=0;j<vtx_moved->neigh_no;j++){
|
if(vtx_moved->neigh[j]==vtx_avoid) continue;
|
/* for(k=0;k<vtx_moved->neigh[j]->neigh_no;k++){
|
if(vtx_moved->neigh[j]->neigh[k]==vtx_avoid) continue;
|
}
|
*/
|
|
}
|
|
memcpy((void *)&backupvtx[0],(void *)vtx_moved,sizeof(ts_vertex));
|
//move vertex in specified direction. first try, test move!
|
|
Rv=sqrt(pow(vtx_moved->x,2)+pow(vtx_moved->y,2)+pow(vtx_moved->z,2));
|
dh=2.0*Vol/(sqrt(3.0)*l0*l0);
|
// fprintf(stderr,"Prej (x,y,z)=(%e,%e,%e).\n",vtx_moved->x,vtx_moved->y,vtx_moved->z);
|
vtx_moved->x=vtx_moved->x*(1.0-dh/Rv);
|
vtx_moved->y=vtx_moved->y*(1.0-dh/Rv);
|
vtx_moved->z=vtx_moved->z*(1.0-dh/Rv);
|
// fprintf(stderr,"Potem (x,y,z)=(%e,%e,%e). Vol=%e\n",vtx_moved->x,vtx_moved->y,vtx_moved->z,Vol);
|
|
//check for constraints
|
if(constvolConstraintCheck(vesicle, vtx_moved)==TS_FAIL){
|
vtx_moved=memcpy((void *)vtx_moved,(void *)&backupvtx[0],sizeof(ts_vertex));
|
continue;
|
}
|
// fprintf(stderr,"Sprejet.\n");
|
|
// All checks OK!
|
fprintf(stderr, "Step 1 success\n");
|
|
for(j=0;j<vtx_moved->neigh_no;j++){
|
memcpy((void *)&backupvtx[j+1],(void *)vtx_moved->neigh[j],sizeof(ts_vertex));
|
}
|
dvol=0.0;
|
for(j=0;j<vtx_moved->tristar_no;j++){
|
dvol-=vtx_moved->tristar[j]->volume;
|
triangle_normal_vector(vtx_moved->tristar[j]);
|
dvol+=vtx_moved->tristar[j]->volume;
|
}
|
|
voldiff=dvol-Vol;
|
|
if(fabs(voldiff)/vesicle->volume < vesicle->tape->constvolprecision){
|
//calculate energy, return change in energy...
|
oenergy=vtx_moved->energy;
|
energy_vertex(vtx_moved);
|
delta_energy=vtx_moved->xk*(vtx_moved->energy - oenergy);
|
//the same is done for neighbouring vertices
|
for(i=0;i<vtx_moved->neigh_no;i++){
|
oenergy=vtx_moved->neigh[i]->energy;
|
energy_vertex(vtx_moved->neigh[i]);
|
delta_energy+=vtx_moved->neigh[i]->xk*(vtx_moved->neigh[i]->energy-oenergy);
|
}
|
*retEnergy=delta_energy;
|
*vtx_backup=backupvtx;
|
*vtx_moved_retval=vtx_moved;
|
fprintf(stderr, "Preliminary success\n");
|
return TS_SUCCESS;
|
}
|
fprintf(stderr, "Step 2 success\n");
|
//do it again ;)
|
dh=Vol*dh/dvol;
|
vtx_moved=memcpy((void *)vtx_moved,(void *)&backupvtx[0],sizeof(ts_vertex));
|
vtx_moved->x=vtx_moved->x*(1-dh/Rv);
|
vtx_moved->y=vtx_moved->y*(1-dh/Rv);
|
vtx_moved->z=vtx_moved->z*(1-dh/Rv);
|
//check for constraints
|
if(constvolConstraintCheck(vesicle, vtx_moved)==TS_FAIL){
|
for(j=0;j<vtx_moved->neigh_no;j++){
|
memcpy((void *)vtx_moved->neigh[j],(void *)&backupvtx[j+1],sizeof(ts_vertex));
|
}
|
vtx_moved=memcpy((void *)vtx_moved,(void *)&backupvtx[0],sizeof(ts_vertex));
|
continue;
|
}
|
|
dvol=0.0;
|
for(j=0;j<vtx_moved->tristar_no;j++){
|
dvol-=vtx_moved->tristar[j]->volume;
|
triangle_normal_vector(vtx_moved->tristar[j]);
|
dvol+=vtx_moved->tristar[j]->volume;
|
}
|
|
fprintf(stderr, "Step 3a success voldiff=%e\n",voldiff);
|
voldiff=dvol-Vol;
|
fprintf(stderr, "Step 3b success voldiff=%e\n",voldiff);
|
if(fabs(voldiff)/vesicle->volume < vesicle->tape->constvolprecision){
|
//calculate energy, return change in energy...
|
oenergy=vtx_moved->energy;
|
energy_vertex(vtx_moved);
|
delta_energy=vtx_moved->xk*(vtx_moved->energy - oenergy);
|
//the same is done for neighbouring vertices
|
for(i=0;i<vtx_moved->neigh_no;i++){
|
oenergy=vtx_moved->neigh[i]->energy;
|
energy_vertex(vtx_moved->neigh[i]);
|
delta_energy+=vtx_moved->neigh[i]->xk*(vtx_moved->neigh[i]->energy-oenergy);
|
}
|
*retEnergy=delta_energy;
|
*vtx_backup=backupvtx;
|
*vtx_moved_retval=vtx_moved;
|
fprintf(stderr, "DVOL=%e\n",voldiff);
|
return TS_SUCCESS;
|
}
|
|
|
}
|
free(backupvtx);
|
fprintf(stderr, "fail\n");
|
return TS_FAIL;
|
}
|
|
|
ts_bool constvolConstraintCheck(ts_vesicle *vesicle, ts_vertex *vtx){
|
ts_uint i;
|
ts_double dist;
|
ts_uint cellidx;
|
//distance with neighbours check
|
for(i=0;i<vtx->neigh_no;i++){
|
dist=vtx_distance_sq(vtx,vtx->neigh[i]);
|
if(dist<1.0 || dist>vesicle->dmax) {
|
return TS_FAIL;
|
}
|
}
|
// Distance with grafted poly-vertex check:
|
if(vtx->grafted_poly!=NULL){
|
dist=vtx_distance_sq(vtx,vtx->grafted_poly->vlist->vtx[0]);
|
if(dist<1.0 || dist>vesicle->dmax) {
|
return TS_FAIL;
|
}
|
}
|
|
// Nucleus penetration check:
|
if (vtx->x*vtx->x + vtx->y*vtx->y + vtx->z*vtx->z < vesicle->R_nucleus){
|
return TS_FAIL;
|
}
|
|
//self avoidance check with distant vertices
|
cellidx=vertex_self_avoidance(vesicle, vtx);
|
//check occupation number
|
return cell_occupation_number_and_internal_proximity(vesicle->clist,cellidx,vtx);
|
}
|
|
|
|
ts_bool constvolumerestore(ts_vertex *vtx_moved,ts_vertex *vtx_backup){
|
ts_uint j;
|
memcpy((void *)vtx_moved,(void *)&vtx_backup[0],sizeof(ts_vertex));
|
for(j=0;j<vtx_moved->neigh_no;j++){
|
memcpy((void *)vtx_moved->neigh[j],(void *)&vtx_backup[j+1],sizeof(ts_vertex));
|
}
|
free(vtx_backup);
|
return TS_SUCCESS;
|
}
|
|
ts_bool constvolumeaccept(ts_vesicle *vesicle,ts_vertex *vtx_moved, ts_vertex *vtx_backup){
|
ts_bool retval;
|
ts_uint cellidx=vertex_self_avoidance(vesicle, vtx_moved);
|
if(vtx_moved->cell!=vesicle->clist->cell[cellidx]){
|
retval=cell_add_vertex(vesicle->clist->cell[cellidx],vtx_moved);
|
if(retval==TS_SUCCESS) cell_remove_vertex(vtx_backup[0].cell,vtx_moved);
|
|
}
|
free(vtx_backup);
|
|
return TS_SUCCESS;
|
}
|