commit | author | age
|
460c2a
|
1 |
#include<stdlib.h> |
SP |
2 |
#include<stdio.h> |
|
3 |
#include<string.h> |
|
4 |
#include<math.h> |
|
5 |
#include "general.h" |
|
6 |
#include "constvol.h" |
|
7 |
#include "triangle.h" |
|
8 |
#include "energy.h" |
|
9 |
#include "vertex.h" |
|
10 |
#include "cell.h" |
|
11 |
|
fbcbdf
|
12 |
ts_bool constvolume(ts_vesicle *vesicle, ts_vertex *vtx_avoid, ts_double Vol, ts_double *retEnergy, ts_vertex **vtx_moved_retval, ts_vertex **vtx_backup){ |
SP |
13 |
ts_vertex *vtx_moved; |
460c2a
|
14 |
ts_uint vtxind,i,j; |
SP |
15 |
ts_uint Ntries=20; |
|
16 |
ts_vertex *backupvtx; |
|
17 |
ts_double Rv, dh, dvol, voldiff, oenergy,delta_energy; |
|
18 |
backupvtx=(ts_vertex *)calloc(sizeof(ts_vertex),10); |
fbcbdf
|
19 |
ts_double l0 = (1.0 + sqrt(vesicle->dmax))/2.0; //make this a global constant if necessary |
460c2a
|
20 |
for(i=0;i<Ntries;i++){ |
SP |
21 |
vtxind=rand() % vesicle->vlist->n; |
|
22 |
vtx_moved=vesicle->vlist->vtx[vtxind]; |
|
23 |
if(vtx_moved==vtx_avoid) continue; |
|
24 |
|
|
25 |
for(j=0;j<vtx_moved->neigh_no;j++){ |
|
26 |
if(vtx_moved->neigh[j]==vtx_avoid) continue; |
b2fa8c
|
27 |
/* for(k=0;k<vtx_moved->neigh[j]->neigh_no;k++){ |
SP |
28 |
if(vtx_moved->neigh[j]->neigh[k]==vtx_avoid) continue; |
|
29 |
} |
|
30 |
*/ |
|
31 |
|
460c2a
|
32 |
} |
fbcbdf
|
33 |
|
460c2a
|
34 |
memcpy((void *)&backupvtx[0],(void *)vtx_moved,sizeof(ts_vertex)); |
SP |
35 |
//move vertex in specified direction. first try, test move! |
|
36 |
|
|
37 |
Rv=sqrt(pow(vtx_moved->x,2)+pow(vtx_moved->y,2)+pow(vtx_moved->z,2)); |
fbcbdf
|
38 |
dh=2.0*Vol/(sqrt(3.0)*l0*l0); |
SP |
39 |
// fprintf(stderr,"Prej (x,y,z)=(%e,%e,%e).\n",vtx_moved->x,vtx_moved->y,vtx_moved->z); |
|
40 |
vtx_moved->x=vtx_moved->x*(1.0-dh/Rv); |
|
41 |
vtx_moved->y=vtx_moved->y*(1.0-dh/Rv); |
|
42 |
vtx_moved->z=vtx_moved->z*(1.0-dh/Rv); |
|
43 |
// fprintf(stderr,"Potem (x,y,z)=(%e,%e,%e). Vol=%e\n",vtx_moved->x,vtx_moved->y,vtx_moved->z,Vol); |
460c2a
|
44 |
|
SP |
45 |
//check for constraints |
|
46 |
if(constvolConstraintCheck(vesicle, vtx_moved)==TS_FAIL){ |
|
47 |
vtx_moved=memcpy((void *)vtx_moved,(void *)&backupvtx[0],sizeof(ts_vertex)); |
|
48 |
continue; |
|
49 |
} |
fbcbdf
|
50 |
// fprintf(stderr,"Sprejet.\n"); |
460c2a
|
51 |
|
SP |
52 |
// All checks OK! |
b2fa8c
|
53 |
fprintf(stderr, "Step 1 success\n"); |
460c2a
|
54 |
|
SP |
55 |
for(j=0;j<vtx_moved->neigh_no;j++){ |
|
56 |
memcpy((void *)&backupvtx[j+1],(void *)vtx_moved->neigh[j],sizeof(ts_vertex)); |
|
57 |
} |
|
58 |
dvol=0.0; |
|
59 |
for(j=0;j<vtx_moved->tristar_no;j++){ |
|
60 |
dvol-=vtx_moved->tristar[j]->volume; |
|
61 |
triangle_normal_vector(vtx_moved->tristar[j]); |
|
62 |
dvol+=vtx_moved->tristar[j]->volume; |
|
63 |
} |
|
64 |
|
|
65 |
voldiff=dvol-Vol; |
|
66 |
|
|
67 |
if(fabs(voldiff)/vesicle->volume < vesicle->tape->constvolprecision){ |
|
68 |
//calculate energy, return change in energy... |
|
69 |
oenergy=vtx_moved->energy; |
|
70 |
energy_vertex(vtx_moved); |
|
71 |
delta_energy=vtx_moved->xk*(vtx_moved->energy - oenergy); |
|
72 |
//the same is done for neighbouring vertices |
|
73 |
for(i=0;i<vtx_moved->neigh_no;i++){ |
|
74 |
oenergy=vtx_moved->neigh[i]->energy; |
|
75 |
energy_vertex(vtx_moved->neigh[i]); |
|
76 |
delta_energy+=vtx_moved->neigh[i]->xk*(vtx_moved->neigh[i]->energy-oenergy); |
|
77 |
} |
|
78 |
*retEnergy=delta_energy; |
fbcbdf
|
79 |
*vtx_backup=backupvtx; |
SP |
80 |
*vtx_moved_retval=vtx_moved; |
b2fa8c
|
81 |
fprintf(stderr, "Preliminary success\n"); |
460c2a
|
82 |
return TS_SUCCESS; |
SP |
83 |
} |
b2fa8c
|
84 |
fprintf(stderr, "Step 2 success\n"); |
460c2a
|
85 |
//do it again ;) |
SP |
86 |
dh=Vol*dh/dvol; |
|
87 |
vtx_moved=memcpy((void *)vtx_moved,(void *)&backupvtx[0],sizeof(ts_vertex)); |
|
88 |
vtx_moved->x=vtx_moved->x*(1-dh/Rv); |
|
89 |
vtx_moved->y=vtx_moved->y*(1-dh/Rv); |
|
90 |
vtx_moved->z=vtx_moved->z*(1-dh/Rv); |
|
91 |
//check for constraints |
|
92 |
if(constvolConstraintCheck(vesicle, vtx_moved)==TS_FAIL){ |
|
93 |
for(j=0;j<vtx_moved->neigh_no;j++){ |
|
94 |
memcpy((void *)vtx_moved->neigh[j],(void *)&backupvtx[j+1],sizeof(ts_vertex)); |
|
95 |
} |
|
96 |
vtx_moved=memcpy((void *)vtx_moved,(void *)&backupvtx[0],sizeof(ts_vertex)); |
|
97 |
continue; |
|
98 |
} |
|
99 |
|
b2fa8c
|
100 |
dvol=0.0; |
SP |
101 |
for(j=0;j<vtx_moved->tristar_no;j++){ |
|
102 |
dvol-=vtx_moved->tristar[j]->volume; |
|
103 |
triangle_normal_vector(vtx_moved->tristar[j]); |
|
104 |
dvol+=vtx_moved->tristar[j]->volume; |
|
105 |
} |
|
106 |
|
|
107 |
fprintf(stderr, "Step 3a success voldiff=%e\n",voldiff); |
460c2a
|
108 |
voldiff=dvol-Vol; |
b2fa8c
|
109 |
fprintf(stderr, "Step 3b success voldiff=%e\n",voldiff); |
460c2a
|
110 |
if(fabs(voldiff)/vesicle->volume < vesicle->tape->constvolprecision){ |
SP |
111 |
//calculate energy, return change in energy... |
|
112 |
oenergy=vtx_moved->energy; |
|
113 |
energy_vertex(vtx_moved); |
|
114 |
delta_energy=vtx_moved->xk*(vtx_moved->energy - oenergy); |
|
115 |
//the same is done for neighbouring vertices |
|
116 |
for(i=0;i<vtx_moved->neigh_no;i++){ |
|
117 |
oenergy=vtx_moved->neigh[i]->energy; |
|
118 |
energy_vertex(vtx_moved->neigh[i]); |
|
119 |
delta_energy+=vtx_moved->neigh[i]->xk*(vtx_moved->neigh[i]->energy-oenergy); |
|
120 |
} |
|
121 |
*retEnergy=delta_energy; |
fbcbdf
|
122 |
*vtx_backup=backupvtx; |
SP |
123 |
*vtx_moved_retval=vtx_moved; |
b2fa8c
|
124 |
fprintf(stderr, "DVOL=%e\n",voldiff); |
460c2a
|
125 |
return TS_SUCCESS; |
SP |
126 |
} |
|
127 |
|
|
128 |
|
|
129 |
} |
|
130 |
free(backupvtx); |
b2fa8c
|
131 |
fprintf(stderr, "fail\n"); |
460c2a
|
132 |
return TS_FAIL; |
SP |
133 |
} |
|
134 |
|
|
135 |
|
|
136 |
ts_bool constvolConstraintCheck(ts_vesicle *vesicle, ts_vertex *vtx){ |
|
137 |
ts_uint i; |
|
138 |
ts_double dist; |
|
139 |
ts_uint cellidx; |
|
140 |
//distance with neighbours check |
|
141 |
for(i=0;i<vtx->neigh_no;i++){ |
|
142 |
dist=vtx_distance_sq(vtx,vtx->neigh[i]); |
|
143 |
if(dist<1.0 || dist>vesicle->dmax) { |
|
144 |
return TS_FAIL; |
|
145 |
} |
|
146 |
} |
|
147 |
// Distance with grafted poly-vertex check: |
|
148 |
if(vtx->grafted_poly!=NULL){ |
|
149 |
dist=vtx_distance_sq(vtx,vtx->grafted_poly->vlist->vtx[0]); |
|
150 |
if(dist<1.0 || dist>vesicle->dmax) { |
|
151 |
return TS_FAIL; |
|
152 |
} |
|
153 |
} |
|
154 |
|
|
155 |
// Nucleus penetration check: |
|
156 |
if (vtx->x*vtx->x + vtx->y*vtx->y + vtx->z*vtx->z < vesicle->R_nucleus){ |
|
157 |
return TS_FAIL; |
|
158 |
} |
|
159 |
|
|
160 |
//self avoidance check with distant vertices |
|
161 |
cellidx=vertex_self_avoidance(vesicle, vtx); |
|
162 |
//check occupation number |
|
163 |
return cell_occupation_number_and_internal_proximity(vesicle->clist,cellidx,vtx); |
|
164 |
} |
|
165 |
|
|
166 |
|
|
167 |
|
|
168 |
ts_bool constvolumerestore(ts_vertex *vtx_moved,ts_vertex *vtx_backup){ |
|
169 |
ts_uint j; |
fbcbdf
|
170 |
memcpy((void *)vtx_moved,(void *)&vtx_backup[0],sizeof(ts_vertex)); |
SP |
171 |
for(j=0;j<vtx_moved->neigh_no;j++){ |
460c2a
|
172 |
memcpy((void *)vtx_moved->neigh[j],(void *)&vtx_backup[j+1],sizeof(ts_vertex)); |
fbcbdf
|
173 |
} |
SP |
174 |
free(vtx_backup); |
460c2a
|
175 |
return TS_SUCCESS; |
SP |
176 |
} |
|
177 |
|
fbcbdf
|
178 |
ts_bool constvolumeaccept(ts_vesicle *vesicle,ts_vertex *vtx_moved, ts_vertex *vtx_backup){ |
SP |
179 |
ts_bool retval; |
|
180 |
ts_uint cellidx=vertex_self_avoidance(vesicle, vtx_moved); |
|
181 |
if(vtx_moved->cell!=vesicle->clist->cell[cellidx]){ |
|
182 |
retval=cell_add_vertex(vesicle->clist->cell[cellidx],vtx_moved); |
|
183 |
if(retval==TS_SUCCESS) cell_remove_vertex(vtx_backup[0].cell,vtx_moved); |
|
184 |
|
|
185 |
} |
|
186 |
free(vtx_backup); |
460c2a
|
187 |
|
SP |
188 |
return TS_SUCCESS; |
|
189 |
} |