Development of the ocr part of AOI
Samo Penic
2018-11-18 69abed7feb165280d1ebf8714d71bb25294cbb97
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
from pyzbar.pyzbar import decode
from .sid_process import getSID
import cv2
import numpy as np
import os
import pkg_resources
 
markerfile = '/template.png'  # always use slash
markerfilename = pkg_resources.resource_filename(__name__, markerfile)
 
 
 
class Paper:
    def __init__(self, filename=None, sid_classifier=None, settings=None, output_path="/tmp"):
        self.filename = filename
        self.output_path=output_path
        self.invalid = None
        self.QRData = None
        self.settings = {"answer_threshold": 0.25} if settings is None else settings
        self.errors = []
        self.warnings = []
        self.sid = None
        self.sid_classifier = sid_classifier
        if filename is not None:
            self.loadImage(filename)
            self.runOcr()
 
    def loadImage(self, filename, rgbchannel=0):
        self.img = cv2.imread(filename, rgbchannel)
        if self.img is None:
            self.errors.append("File could not be loaded!")
            self.invalid = True
            return
        self.imgHeight, self.imgWidth = self.img.shape[0:2]
 
    def saveImage(self, filename="/tmp/debug_image.png"):
        cv2.imwrite(filename, self.img)
 
    def runOcr(self):
        if self.invalid == True:
            return
        self.decodeQRandRotate()
        self.imgTreshold()
        skewAngle = 0
        #         try:
        #             skewAngle=self.getSkewAngle()
        #         except:
        #             self.errors.append("Could not determine skew angle!")
        #         self.rotateAngle(skewAngle)
 
        self.generateAnswerMatrix()
 
        self.saveImage()
 
    def decodeQRandRotate(self):
        if self.invalid == True:
            return
        blur = cv2.blur(self.img, (3, 3))
        d = decode(blur)
        self.img = blur
        if len(d) == 0:
            self.errors.append("QR code could not be found!")
            self.data = None
            self.invalid = True
            return
        if(len(d)>1): #if there are multiple codes, get first ean or qr code available.
            for dd in d:
                if(dd.type=="EAN13" or dd.type=="QR"):
                    d[0]=dd
                    break
        self.QRDecode = d
        self.QRData = d[0].data
        xpos = d[0].rect.left
        ypos = d[0].rect.top
        # check if image is rotated wrongly
        if xpos > self.imgHeight / 2.0 and ypos > self.imgWidth / 2.0:
            self.rotateAngle(180)
 
    def rotateAngle(self, angle=0):
        # rot_mat = cv2.getRotationMatrix2D(
        #    (self.imgHeight / 2, self.imgWidth / 2), angle, 1.0
        # )
        rot_mat = cv2.getRotationMatrix2D(
            (self.imgWidth / 2, self.imgHeight / 2), angle, 1.0
        )
        result = cv2.warpAffine(
            self.img,
            rot_mat,
            (self.imgWidth, self.imgHeight),
            flags=cv2.INTER_CUBIC,
            borderMode=cv2.BORDER_CONSTANT,
            borderValue=(255, 255, 255),
        )
 
        self.img = result
        self.imgHeight, self.imgWidth = self.img.shape[0:2]
 
        # todo, make better tresholding
 
    def imgTreshold(self):
        (self.thresh, self.bwimg) = cv2.threshold(
            self.img, 128, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU
        )
 
    def getSkewAngle(self):
        neg = 255 - self.bwimg  # get negative image
        cv2.imwrite("/tmp/debug_1.png", neg)
 
        angle_counter = 0  # number of angles
        angle = 0.0  # collects sum of angles
        cimg = cv2.cvtColor(self.img, cv2.COLOR_GRAY2BGR)
 
        # get all the Hough lines
        for line in cv2.HoughLinesP(neg, 1, np.pi / 180, 325):
            x1, y1, x2, y2 = line[0]
            cv2.line(cimg, (x1, y1), (x2, y2), (0, 0, 255), 2)
            # calculate the angle (in radians)
            this_angle = np.arctan2(y2 - y1, x2 - x1)
            if this_angle and abs(this_angle) <= 10:
                # filtered zero degree and outliers
                angle += this_angle
                angle_counter += 1
 
                # the skew is calculated of the mean of the total angles, #try block helps with division by zero.
        try:
            skew = np.rad2deg(
                angle / angle_counter
            )  # the 1.2 factor is just experimental....
        except:
            skew = 0
 
        cv2.imwrite("/tmp/debug_2.png", cimg)
        return skew
 
    def locateUpMarkers(self, threshold=0.85, height=200):
        template = cv2.imread(markerfilename, 0)
        w, h = template.shape[::-1]
        crop_img = self.img[0:height, :]
        res = cv2.matchTemplate(crop_img, template, cv2.TM_CCOEFF_NORMED)
        loc = np.where(res >= threshold)
        cimg = cv2.cvtColor(crop_img, cv2.COLOR_GRAY2BGR)
        # remove false matching of the squares in qr code
        loc_filtered_x = []
        loc_filtered_y = []
        if len(loc[0]) == 0:
            min_y = -1
        else:
            min_y = np.min(loc[0])
            for pt in zip(*loc[::-1]):
                if pt[1] < min_y + 20:
                    loc_filtered_y.append(pt[1])
                    loc_filtered_x.append(pt[0])
                    # order by x coordinate
            loc_filtered_x, loc_filtered_y = zip(
                *sorted(zip(loc_filtered_x, loc_filtered_y))
            )
            # loc=[loc_filtered_y,loc_filtered_x]
            # remove duplicates
            a = np.diff(loc_filtered_x) > 40
            a = np.append(a, True)
            loc_filtered_x = np.array(loc_filtered_x)
            loc_filtered_y = np.array(loc_filtered_y)
            loc = [loc_filtered_y[a], loc_filtered_x[a]]
            for pt in zip(*loc[::-1]):
                cv2.rectangle(cimg, pt, (pt[0] + w, pt[1] + h), (0, 255, 255), 2)
 
        cv2.imwrite("/tmp/debug_3.png", cimg)
 
        self.xMarkerLocations = loc
        return loc
 
    def locateRightMarkers(self, threshold=0.85, width=200):
        template = cv2.imread(markerfilename, 0)
        w, h = template.shape[::-1]
        crop_img = self.img[:, -width:]
        res = cv2.matchTemplate(crop_img, template, cv2.TM_CCOEFF_NORMED)
        loc = np.where(res >= threshold)
        cimg = cv2.cvtColor(crop_img, cv2.COLOR_GRAY2BGR)
        # remove false matching of the squares in qr code
        loc_filtered_x = []
        loc_filtered_y = []
        if len(loc[1]) == 0:
            min_x = -1
        else:
            max_x = np.max(loc[1])
            for pt in zip(*loc[::-1]):
                if pt[1] > max_x - 20:
                    loc_filtered_y.append(pt[1])
                    loc_filtered_x.append(pt[0])
                    # order by y coordinate
            loc_filtered_y, loc_filtered_x = zip(
                *sorted(zip(loc_filtered_y, loc_filtered_x))
            )
            # loc=[loc_filtered_y,loc_filtered_x]
            # remove duplicates
            a = np.diff(loc_filtered_y) > 40
            a = np.append(a, True)
            loc_filtered_x = np.array(loc_filtered_x)
            loc_filtered_y = np.array(loc_filtered_y)
            loc = [loc_filtered_y[a], loc_filtered_x[a]]
            for pt in zip(*loc[::-1]):
                cv2.rectangle(cimg, pt, (pt[0] + w, pt[1] + h), (0, 255, 255), 2)
 
        cv2.imwrite("/tmp/debug_4.png", cimg)
 
        self.yMarkerLocations = [loc[0], loc[1] + self.imgWidth - width]
        return self.yMarkerLocations
 
    def generateAnswerMatrix(self):
        self.locateUpMarkers()
        self.locateRightMarkers()
 
        roixoff = 10
        roiyoff = 5
        roiwidth = 50
        roiheight = roiwidth
        totpx = roiwidth * roiheight
 
        self.answerMatrix = []
        for y in self.yMarkerLocations[0]:
            oneline = []
            for x in self.xMarkerLocations[1]:
                roi = self.bwimg[
                    y - roiyoff : y + int(roiheight - roiyoff),
                    x - roixoff : x + int(roiwidth - roixoff),
                ]
                # cv2.imwrite('ans_x'+str(x)+'_y_'+str(y)+'.png',roi)
                black = totpx - cv2.countNonZero(roi)
                oneline.append(black / totpx)
            self.answerMatrix.append(oneline)
 
    def get_enhanced_sid(self):
        if self.sid_classifier is None:
            return "x"
        if self.settings is not None:
            sid_mask = self.settings.get("sid_mask", None)
        es, err, warn = getSID(
            self.img[
                int(0.04 * self.imgHeight) : int(0.095 * self.imgHeight),
                int(0.7 * self.imgWidth) : int(0.99 * self.imgWidth),
            ],
            self.sid_classifier,
            sid_mask,
        )
        [self.errors.append(e) for e in err]
        [self.warnings.append(w) for w in warn]
        return es
 
    def get_code_data(self):
        if self.QRData is None:
            self.errors.append("Could not read QR or EAN code! Not an exam?")
            retval = {
                "exam_id": None,
                "page_no": None,
                "paper_id": None,
                "faculty_id": None,
                "sid": None,
            }
            return retval
        qrdata = bytes.decode(self.QRData, "utf8")
        if self.QRDecode[0].type == "EAN13":
            return {
                "exam_id": int(qrdata[0:7]),
                "page_no": int(qrdata[7])+1,
                "paper_id": int(qrdata[-5:-1]),
                "faculty_id": None,
                "sid": None,
            }
        else:
            data = qrdata.split(",")
            retval = {
                "exam_id": int(data[1]),
                "page_no": int(data[3])+1,
                "paper_id": int(data[2]),
                "faculty_id": int(data[0]),
            }
            if len(data) > 4:
                retval["sid"] = data[4]
 
            return retval
 
    def get_paper_ocr_data(self):
        data = self.get_code_data()
        data["qr"] = bytes.decode(self.QRData, 'utf8')
        data["errors"] = self.errors
        data["warnings"] = self.warnings
        data["up_position"] = (
            list(self.xMarkerLocations[1] / self.imgWidth),
            list(self.yMarkerLocations[1] / self.imgHeight),
        )
        data["right_position"] = (
            list(self.xMarkerLocations[1] / self.imgWidth),
            list(self.yMarkerLocations[1] / self.imgHeight),
        )
        data["ans_matrix"] = (
            (np.array(self.answerMatrix) > self.settings["answer_threshold"]) * 1
        ).tolist()
        if data["sid"] is None and data["page_no"] == 1:
            data["sid"] = self.get_enhanced_sid()
        output_filename=os.path.join(self.output_path, '.'.join(self.filename.split('/')[-1].split('.')[:-1])+".png")
        cv2.imwrite(output_filename, self.img)
        data['output_filename']=output_filename
        return data