commit | author | age
|
7f6076
|
1 |
/* vim: set ts=4 sts=4 sw=4 noet : */ |
459ff9
|
2 |
#include<math.h> |
SP |
3 |
#include<stdlib.h> |
|
4 |
#include<gsl/gsl_complex.h> |
|
5 |
#include<gsl/gsl_complex_math.h> |
|
6 |
#include<gsl/gsl_sf_legendre.h> |
f06f5f
|
7 |
|
SP |
8 |
#include<gsl/gsl_matrix.h> |
|
9 |
#include<gsl/gsl_vector.h> |
|
10 |
#include<gsl/gsl_linalg.h> |
459ff9
|
11 |
#include "general.h" |
SP |
12 |
#include "sh.h" |
|
13 |
#include "shcomplex.h" |
|
14 |
|
|
15 |
|
|
16 |
ts_spharm *complex_sph_init(ts_vertex_list *vlist, ts_uint l){ |
|
17 |
ts_uint j,i; |
|
18 |
ts_spharm *sph=(ts_spharm *)malloc(sizeof(ts_spharm)); |
|
19 |
|
|
20 |
sph->N=0; |
|
21 |
/* lets initialize Ylm for each vertex. */ |
|
22 |
sph->Ylmi=(ts_double ***)calloc(l,sizeof(ts_double **)); |
|
23 |
for(i=0;i<l;i++){ |
|
24 |
sph->Ylmi[i]=(ts_double **)calloc(2*i+1,sizeof(ts_double *)); |
|
25 |
for(j=0;j<(2*i+1);j++){ |
|
26 |
sph->Ylmi[i][j]=(ts_double *)calloc(vlist->n,sizeof(ts_double)); |
|
27 |
} |
|
28 |
} |
|
29 |
|
|
30 |
/* lets initialize ulm */ |
|
31 |
sph->ulm=(ts_double **)calloc(l,sizeof(ts_double *)); |
|
32 |
sph->ulmComplex=(gsl_complex **)calloc(l,sizeof(gsl_complex *)); |
|
33 |
for(j=0;j<l;j++){ |
|
34 |
sph->ulm[j]=(ts_double *)calloc(2*j+1,sizeof(ts_double)); |
|
35 |
sph->ulmComplex[j]=(gsl_complex *)calloc(2*j+1,sizeof(gsl_complex)); |
|
36 |
} |
|
37 |
|
|
38 |
/* lets initialize sum of Ulm2 */ |
|
39 |
sph->sumUlm2=(ts_double **)calloc(l,sizeof(ts_double *)); |
|
40 |
for(j=0;j<l;j++){ |
|
41 |
sph->sumUlm2[j]=(ts_double *)calloc(2*j+1,sizeof(ts_double)); |
|
42 |
} |
|
43 |
|
|
44 |
/* lets initialize co */ |
|
45 |
//NOTE: C is has zero based indexing. Code is imported from fortran and to comply with original indexes we actually generate one index more. Also second dimension is 2*j+2 instead of 2*j+2. elements starting with 0 are useles and should be ignored! |
|
46 |
sph->co=(ts_double **)calloc(l+1,sizeof(ts_double *)); |
|
47 |
for(j=0;j<=l;j++){ |
|
48 |
sph->co[j]=(ts_double *)calloc(2*j+2,sizeof(ts_double)); |
|
49 |
} |
|
50 |
|
|
51 |
sph->l=l; |
|
52 |
|
|
53 |
/* Calculate coefficients that will remain constant during all the simulation */ |
|
54 |
precomputeShCoeff(sph); |
|
55 |
|
|
56 |
return sph; |
|
57 |
} |
|
58 |
|
|
59 |
ts_bool complex_sph_free(ts_spharm *sph){ |
|
60 |
int i,j; |
|
61 |
if(sph==NULL) return TS_FAIL; |
|
62 |
for(i=0;i<sph->l;i++){ |
|
63 |
if(sph->ulm[i]!=NULL) free(sph->ulm[i]); |
|
64 |
if(sph->ulmComplex[i]!=NULL) free(sph->ulmComplex[i]); |
|
65 |
if(sph->sumUlm2[i]!=NULL) free(sph->sumUlm2[i]); |
|
66 |
if(sph->co[i]!=NULL) free(sph->co[i]); |
|
67 |
} |
|
68 |
if(sph->co[sph->l]!=NULL) free(sph->co[sph->l]); |
|
69 |
if(sph->co != NULL) free(sph->co); |
|
70 |
if(sph->ulm !=NULL) free(sph->ulm); |
|
71 |
if(sph->ulmComplex !=NULL) free(sph->ulmComplex); |
701026
|
72 |
if(sph->sumUlm2 !=NULL) free(sph->sumUlm2); |
459ff9
|
73 |
if(sph->Ylmi!=NULL) { |
SP |
74 |
for(i=0;i<sph->l;i++){ |
|
75 |
if(sph->Ylmi[i]!=NULL){ |
|
76 |
for(j=0;j<i*2+1;j++){ |
|
77 |
if(sph->Ylmi[i][j]!=NULL) free (sph->Ylmi[i][j]); |
|
78 |
} |
|
79 |
free(sph->Ylmi[i]); |
|
80 |
} |
|
81 |
} |
|
82 |
free(sph->Ylmi); |
|
83 |
} |
|
84 |
|
|
85 |
free(sph); |
|
86 |
return TS_SUCCESS; |
|
87 |
} |
|
88 |
|
|
89 |
|
|
90 |
ts_bool calculateUlmComplex(ts_vesicle *vesicle){ |
|
91 |
ts_int i,j,k,m,l; |
|
92 |
ts_vertex *cvtx; |
|
93 |
ts_coord coord; |
|
94 |
/* set all values to zero */ |
|
95 |
for(i=0;i<vesicle->sphHarmonics->l;i++){ |
|
96 |
for(j=0;j<2*i+1;j++) GSL_SET_COMPLEX(&(vesicle->sphHarmonics->ulmComplex[i][j]),0.0,0.0); |
|
97 |
} |
|
98 |
|
|
99 |
for(k=0;k<vesicle->vlist->n; k++){ |
|
100 |
cvtx=vesicle->vlist->vtx[k]; |
|
101 |
cart2sph(&coord,cvtx->x,cvtx->y,cvtx->z); |
|
102 |
for(i=0;i<vesicle->sphHarmonics->l;i++){ |
|
103 |
for(j=0;j<2*i+1;j++){ |
|
104 |
m=j-i; |
|
105 |
l=i; |
|
106 |
if(m>=0){ |
|
107 |
// fprintf(stderr, "Racunam za l=%d, m=%d\n", l,m); |
|
108 |
vesicle->sphHarmonics->ulmComplex[i][j]=gsl_complex_add(vesicle->sphHarmonics->ulmComplex[i][j], gsl_complex_conjugate(gsl_complex_mul_real(gsl_complex_polar(1.0,(ts_double)m*coord.e2),cvtx->solAngle*cvtx->relR*gsl_sf_legendre_sphPlm(l,m,cos(coord.e3)))) ); |
|
109 |
} else { |
|
110 |
// fprintf(stderr, "Racunam za l=%d, abs(m=%d)\n", l,m); |
|
111 |
vesicle->sphHarmonics->ulmComplex[i][j]=gsl_complex_add(vesicle->sphHarmonics->ulmComplex[i][j], gsl_complex_conjugate(gsl_complex_mul_real(gsl_complex_polar(1.0,(ts_double)m*coord.e2),cvtx->solAngle*cvtx->relR*pow(-1,m)*gsl_sf_legendre_sphPlm(l,-m,cos(coord.e3)))) ); |
|
112 |
|
|
113 |
} |
|
114 |
} |
|
115 |
} |
|
116 |
} |
|
117 |
return TS_SUCCESS; |
|
118 |
} |
|
119 |
|
|
120 |
ts_bool storeUlmComplex2(ts_vesicle *vesicle){ |
|
121 |
|
|
122 |
ts_spharm *sph=vesicle->sphHarmonics; |
|
123 |
ts_int i,j; |
|
124 |
for(i=0;i<sph->l;i++){ |
|
125 |
for(j=0;j<2*i+1;j++){ |
|
126 |
sph->sumUlm2[i][j]+=gsl_complex_abs2(sph->ulmComplex[i][j]); |
|
127 |
} |
|
128 |
} |
|
129 |
sph->N++; |
|
130 |
return TS_SUCCESS; |
|
131 |
} |
|
132 |
|
f06f5f
|
133 |
|
22cdfd
|
134 |
ts_double calculateKc(ts_vesicle *vesicle, ts_int lmin, ts_int lmax){ |
SP |
135 |
ts_int min=lmin; |
|
136 |
ts_int max=lmax; //vesicle->sphHarmonics->l-3; |
9f2ad6
|
137 |
ts_long i,j; |
0ee39c
|
138 |
ts_double retval, bval; |
9f2ad6
|
139 |
gsl_matrix *A=gsl_matrix_alloc(max-min,2); |
f06f5f
|
140 |
gsl_vector *tau=gsl_vector_alloc(2); |
9f2ad6
|
141 |
gsl_vector *b=gsl_vector_alloc(max-min); |
f06f5f
|
142 |
gsl_vector *x=gsl_vector_alloc(2); |
9f2ad6
|
143 |
gsl_vector *res=gsl_vector_alloc(max-min); |
f06f5f
|
144 |
|
0ee39c
|
145 |
//solving (A^T*A)*x=A^T*b |
f06f5f
|
146 |
//fill the data for matrix A and vector b |
9f2ad6
|
147 |
for(i=min;i<max;i++){ |
SP |
148 |
gsl_matrix_set(A, i-min,0,(ts_double)((i-1)*(i+2))); |
|
149 |
gsl_matrix_set(A, i-min,1,(ts_double)((i-1)*(i+2)*(i+1)*i)); |
22cdfd
|
150 |
// fprintf(stderr,"%e %e\n", gsl_matrix_get(A,i-min,0), gsl_matrix_get(A,i-min,1)); |
9f2ad6
|
151 |
bval=0.0; |
0ee39c
|
152 |
//average for m from 0..l (only positive m's) |
9f2ad6
|
153 |
for(j=0;j<=i;j++){ |
0ee39c
|
154 |
bval+=vesicle->sphHarmonics->sumUlm2[i][(j+i)]; |
SP |
155 |
} |
9f2ad6
|
156 |
bval=bval/(ts_double)vesicle->sphHarmonics->N/(ts_double)(i+1); |
0ee39c
|
157 |
|
9f2ad6
|
158 |
gsl_vector_set(b,i-min,1.0/bval); |
22cdfd
|
159 |
// fprintf(stderr,"%e\n", 1.0/gsl_vector_get(b,i-min)); |
f06f5f
|
160 |
} |
0ee39c
|
161 |
// fprintf(stderr,"b[2]=%e\n",gsl_vector_get(b,1)); |
f06f5f
|
162 |
gsl_linalg_QR_decomp(A,tau); |
SP |
163 |
gsl_linalg_QR_lssolve(A,tau,b,x,res); |
0ee39c
|
164 |
// fprintf(stderr,"kc=%e\n",gsl_vector_get(x,1)); |
SP |
165 |
retval=gsl_vector_get(x,1); |
f06f5f
|
166 |
gsl_matrix_free(A); |
SP |
167 |
gsl_vector_free(tau); |
|
168 |
gsl_vector_free(b); |
|
169 |
gsl_vector_free(x); |
|
170 |
gsl_vector_free(res); |
0ee39c
|
171 |
|
SP |
172 |
return retval; |
f06f5f
|
173 |
} |