Trisurf Monte Carlo simulator
Samo Penic
2016-07-09 9e5a9c0f110d3ed02751c9d44a3716caa6010a70
commit | author | age
7f6076 1 /* vim: set ts=4 sts=4 sw=4 noet : */
459ff9 2 #include<math.h>
SP 3 #include<stdlib.h>
4 #include<gsl/gsl_complex.h>
5 #include<gsl/gsl_complex_math.h>
6 #include<gsl/gsl_sf_legendre.h>
f06f5f 7
SP 8 #include<gsl/gsl_matrix.h>
9 #include<gsl/gsl_vector.h>
10 #include<gsl/gsl_linalg.h>
459ff9 11 #include "general.h"
SP 12 #include "sh.h"
13 #include "shcomplex.h"
14
15
16 ts_spharm *complex_sph_init(ts_vertex_list *vlist, ts_uint l){
17     ts_uint j,i;
18     ts_spharm *sph=(ts_spharm *)malloc(sizeof(ts_spharm));
19
20     sph->N=0;
21     /* lets initialize Ylm for each vertex. */
22     sph->Ylmi=(ts_double ***)calloc(l,sizeof(ts_double **));
23     for(i=0;i<l;i++){
24             sph->Ylmi[i]=(ts_double **)calloc(2*i+1,sizeof(ts_double *));
25             for(j=0;j<(2*i+1);j++){
26                 sph->Ylmi[i][j]=(ts_double *)calloc(vlist->n,sizeof(ts_double));
27             }
28     }
29         
30     /* lets initialize ulm */
31     sph->ulm=(ts_double **)calloc(l,sizeof(ts_double *));
32     sph->ulmComplex=(gsl_complex **)calloc(l,sizeof(gsl_complex *));
33     for(j=0;j<l;j++){
34         sph->ulm[j]=(ts_double *)calloc(2*j+1,sizeof(ts_double));
35         sph->ulmComplex[j]=(gsl_complex *)calloc(2*j+1,sizeof(gsl_complex));
36     }
37
38     /* lets initialize sum of Ulm2 */
39     sph->sumUlm2=(ts_double **)calloc(l,sizeof(ts_double *));
40     for(j=0;j<l;j++){
41         sph->sumUlm2[j]=(ts_double *)calloc(2*j+1,sizeof(ts_double));
42     }
43
44     /* lets initialize co */
45 //NOTE: C is has zero based indexing. Code is imported from fortran and to comply with original indexes we actually generate one index more. Also second dimension is 2*j+2 instead of 2*j+2. elements starting with 0 are useles and should be ignored!
46     sph->co=(ts_double **)calloc(l+1,sizeof(ts_double *));
47     for(j=0;j<=l;j++){
48         sph->co[j]=(ts_double *)calloc(2*j+2,sizeof(ts_double));
49     }
50
51     sph->l=l;   
52
53     /* Calculate coefficients that will remain constant during all the simulation */ 
54    precomputeShCoeff(sph);
55     
56     return sph;
57 }
58
59 ts_bool complex_sph_free(ts_spharm *sph){
60     int i,j;
61     if(sph==NULL) return TS_FAIL;
62     for(i=0;i<sph->l;i++){
63         if(sph->ulm[i]!=NULL) free(sph->ulm[i]);
64         if(sph->ulmComplex[i]!=NULL) free(sph->ulmComplex[i]);
65         if(sph->sumUlm2[i]!=NULL) free(sph->sumUlm2[i]);
66         if(sph->co[i]!=NULL) free(sph->co[i]);
67     }
68         if(sph->co[sph->l]!=NULL) free(sph->co[sph->l]);
69     if(sph->co != NULL) free(sph->co);
70     if(sph->ulm !=NULL) free(sph->ulm);
71     if(sph->ulmComplex !=NULL) free(sph->ulmComplex);
701026 72     if(sph->sumUlm2 !=NULL) free(sph->sumUlm2);
459ff9 73         if(sph->Ylmi!=NULL) {
SP 74             for(i=0;i<sph->l;i++){
75                 if(sph->Ylmi[i]!=NULL){
76                     for(j=0;j<i*2+1;j++){
77                         if(sph->Ylmi[i][j]!=NULL) free (sph->Ylmi[i][j]);
78                     }
79                     free(sph->Ylmi[i]);
80                 }
81             }
82             free(sph->Ylmi);
83         }
84
85     free(sph);
86     return TS_SUCCESS;
87 }
88
89
90 ts_bool calculateUlmComplex(ts_vesicle *vesicle){
91     ts_int i,j,k,m,l;
92     ts_vertex *cvtx;
93     ts_coord coord;
94 /* set all values to zero */
95     for(i=0;i<vesicle->sphHarmonics->l;i++){
96         for(j=0;j<2*i+1;j++) GSL_SET_COMPLEX(&(vesicle->sphHarmonics->ulmComplex[i][j]),0.0,0.0);
97     }
98
99     for(k=0;k<vesicle->vlist->n; k++){
100         cvtx=vesicle->vlist->vtx[k];
101     cart2sph(&coord,cvtx->x,cvtx->y,cvtx->z);
102         for(i=0;i<vesicle->sphHarmonics->l;i++){
103             for(j=0;j<2*i+1;j++){
104         m=j-i;
105         l=i;
106         if(m>=0){    
107     //    fprintf(stderr, "Racunam za l=%d, m=%d\n", l,m);
108                 vesicle->sphHarmonics->ulmComplex[i][j]=gsl_complex_add(vesicle->sphHarmonics->ulmComplex[i][j], gsl_complex_conjugate(gsl_complex_mul_real(gsl_complex_polar(1.0,(ts_double)m*coord.e2),cvtx->solAngle*cvtx->relR*gsl_sf_legendre_sphPlm(l,m,cos(coord.e3)))) );
109         } else {
110     //    fprintf(stderr, "Racunam za l=%d, abs(m=%d)\n", l,m);
111                 vesicle->sphHarmonics->ulmComplex[i][j]=gsl_complex_add(vesicle->sphHarmonics->ulmComplex[i][j], gsl_complex_conjugate(gsl_complex_mul_real(gsl_complex_polar(1.0,(ts_double)m*coord.e2),cvtx->solAngle*cvtx->relR*pow(-1,m)*gsl_sf_legendre_sphPlm(l,-m,cos(coord.e3)))) );
112
113         }
114             }
115         }
116     }
117     return TS_SUCCESS;
118 }
119
120 ts_bool storeUlmComplex2(ts_vesicle *vesicle){
121
122     ts_spharm *sph=vesicle->sphHarmonics;
123     ts_int i,j;
124     for(i=0;i<sph->l;i++){
125             for(j=0;j<2*i+1;j++){
126                 sph->sumUlm2[i][j]+=gsl_complex_abs2(sph->ulmComplex[i][j]);
127             }
128     }
129     sph->N++;
130     return TS_SUCCESS;
131 }
132
f06f5f 133
22cdfd 134 ts_double calculateKc(ts_vesicle *vesicle, ts_int lmin, ts_int lmax){
SP 135     ts_int min=lmin;
136     ts_int max=lmax; //vesicle->sphHarmonics->l-3;
9f2ad6 137     ts_long i,j;
0ee39c 138     ts_double retval, bval;
9f2ad6 139     gsl_matrix *A=gsl_matrix_alloc(max-min,2);
f06f5f 140     gsl_vector *tau=gsl_vector_alloc(2);
9f2ad6 141     gsl_vector *b=gsl_vector_alloc(max-min);
f06f5f 142     gsl_vector *x=gsl_vector_alloc(2);
9f2ad6 143     gsl_vector *res=gsl_vector_alloc(max-min);
f06f5f 144
0ee39c 145     //solving (A^T*A)*x=A^T*b
f06f5f 146     //fill the data for matrix A and vector b
9f2ad6 147     for(i=min;i<max;i++){
SP 148             gsl_matrix_set(A, i-min,0,(ts_double)((i-1)*(i+2)));
149             gsl_matrix_set(A, i-min,1,(ts_double)((i-1)*(i+2)*(i+1)*i));
22cdfd 150 //            fprintf(stderr,"%e %e\n", gsl_matrix_get(A,i-min,0), gsl_matrix_get(A,i-min,1));
9f2ad6 151             bval=0.0;
0ee39c 152             //average for m from 0..l (only positive m's)
9f2ad6 153             for(j=0;j<=i;j++){
0ee39c 154                 bval+=vesicle->sphHarmonics->sumUlm2[i][(j+i)];
SP 155             }
9f2ad6 156                 bval=bval/(ts_double)vesicle->sphHarmonics->N/(ts_double)(i+1);
0ee39c 157
9f2ad6 158             gsl_vector_set(b,i-min,1.0/bval);
22cdfd 159 //            fprintf(stderr,"%e\n", 1.0/gsl_vector_get(b,i-min));
f06f5f 160     }
0ee39c 161 //    fprintf(stderr,"b[2]=%e\n",gsl_vector_get(b,1));
f06f5f 162     gsl_linalg_QR_decomp(A,tau);
SP 163     gsl_linalg_QR_lssolve(A,tau,b,x,res);
0ee39c 164 //    fprintf(stderr,"kc=%e\n",gsl_vector_get(x,1));
SP 165     retval=gsl_vector_get(x,1);
f06f5f 166     gsl_matrix_free(A);
SP 167     gsl_vector_free(tau);
168     gsl_vector_free(b);
169     gsl_vector_free(x);
170     gsl_vector_free(res);
0ee39c 171     
SP 172     return retval;
f06f5f 173 }