Trisurf Monte Carlo simulator
Samo Penic
2014-05-06 7d5e22d9eda3020e8b2b3fd8a70f25306561b401
commit | author | age
459ff9 1 #include<math.h>
SP 2 #include<stdlib.h>
3 #include<gsl/gsl_complex.h>
4 #include<gsl/gsl_complex_math.h>
5 #include<gsl/gsl_sf_legendre.h>
f06f5f 6
SP 7 #include<gsl/gsl_matrix.h>
8 #include<gsl/gsl_vector.h>
9 #include<gsl/gsl_linalg.h>
459ff9 10 #include "general.h"
SP 11 #include "sh.h"
12 #include "shcomplex.h"
13
14
15 ts_spharm *complex_sph_init(ts_vertex_list *vlist, ts_uint l){
16     ts_uint j,i;
17     ts_spharm *sph=(ts_spharm *)malloc(sizeof(ts_spharm));
18
19     sph->N=0;
20     /* lets initialize Ylm for each vertex. */
21     sph->Ylmi=(ts_double ***)calloc(l,sizeof(ts_double **));
22     for(i=0;i<l;i++){
23             sph->Ylmi[i]=(ts_double **)calloc(2*i+1,sizeof(ts_double *));
24             for(j=0;j<(2*i+1);j++){
25                 sph->Ylmi[i][j]=(ts_double *)calloc(vlist->n,sizeof(ts_double));
26             }
27     }
28         
29     /* lets initialize ulm */
30     sph->ulm=(ts_double **)calloc(l,sizeof(ts_double *));
31     sph->ulmComplex=(gsl_complex **)calloc(l,sizeof(gsl_complex *));
32     for(j=0;j<l;j++){
33         sph->ulm[j]=(ts_double *)calloc(2*j+1,sizeof(ts_double));
34         sph->ulmComplex[j]=(gsl_complex *)calloc(2*j+1,sizeof(gsl_complex));
35     }
36
37     /* lets initialize sum of Ulm2 */
38     sph->sumUlm2=(ts_double **)calloc(l,sizeof(ts_double *));
39     for(j=0;j<l;j++){
40         sph->sumUlm2[j]=(ts_double *)calloc(2*j+1,sizeof(ts_double));
41     }
42
43     /* lets initialize co */
44 //NOTE: C is has zero based indexing. Code is imported from fortran and to comply with original indexes we actually generate one index more. Also second dimension is 2*j+2 instead of 2*j+2. elements starting with 0 are useles and should be ignored!
45     sph->co=(ts_double **)calloc(l+1,sizeof(ts_double *));
46     for(j=0;j<=l;j++){
47         sph->co[j]=(ts_double *)calloc(2*j+2,sizeof(ts_double));
48     }
49
50     sph->l=l;   
51
52     /* Calculate coefficients that will remain constant during all the simulation */ 
53    precomputeShCoeff(sph);
54     
55     return sph;
56 }
57
58 ts_bool complex_sph_free(ts_spharm *sph){
59     int i,j;
60     if(sph==NULL) return TS_FAIL;
61     for(i=0;i<sph->l;i++){
62         if(sph->ulm[i]!=NULL) free(sph->ulm[i]);
63         if(sph->ulmComplex[i]!=NULL) free(sph->ulmComplex[i]);
64         if(sph->sumUlm2[i]!=NULL) free(sph->sumUlm2[i]);
65         if(sph->co[i]!=NULL) free(sph->co[i]);
66     }
67         if(sph->co[sph->l]!=NULL) free(sph->co[sph->l]);
68     if(sph->co != NULL) free(sph->co);
69     if(sph->ulm !=NULL) free(sph->ulm);
70     if(sph->ulmComplex !=NULL) free(sph->ulmComplex);
71
72         if(sph->Ylmi!=NULL) {
73             for(i=0;i<sph->l;i++){
74                 if(sph->Ylmi[i]!=NULL){
75                     for(j=0;j<i*2+1;j++){
76                         if(sph->Ylmi[i][j]!=NULL) free (sph->Ylmi[i][j]);
77                     }
78                     free(sph->Ylmi[i]);
79                 }
80             }
81             free(sph->Ylmi);
82         }
83
84     free(sph);
85     return TS_SUCCESS;
86 }
87
88
89 ts_bool calculateUlmComplex(ts_vesicle *vesicle){
90     ts_int i,j,k,m,l;
91     ts_vertex *cvtx;
92     ts_coord coord;
93 /* set all values to zero */
94     for(i=0;i<vesicle->sphHarmonics->l;i++){
95         for(j=0;j<2*i+1;j++) GSL_SET_COMPLEX(&(vesicle->sphHarmonics->ulmComplex[i][j]),0.0,0.0);
96     }
97
98     for(k=0;k<vesicle->vlist->n; k++){
99         cvtx=vesicle->vlist->vtx[k];
100     cart2sph(&coord,cvtx->x,cvtx->y,cvtx->z);
101         for(i=0;i<vesicle->sphHarmonics->l;i++){
102             for(j=0;j<2*i+1;j++){
103         m=j-i;
104         l=i;
105         if(m>=0){    
106     //    fprintf(stderr, "Racunam za l=%d, m=%d\n", l,m);
107                 vesicle->sphHarmonics->ulmComplex[i][j]=gsl_complex_add(vesicle->sphHarmonics->ulmComplex[i][j], gsl_complex_conjugate(gsl_complex_mul_real(gsl_complex_polar(1.0,(ts_double)m*coord.e2),cvtx->solAngle*cvtx->relR*gsl_sf_legendre_sphPlm(l,m,cos(coord.e3)))) );
108         } else {
109     //    fprintf(stderr, "Racunam za l=%d, abs(m=%d)\n", l,m);
110                 vesicle->sphHarmonics->ulmComplex[i][j]=gsl_complex_add(vesicle->sphHarmonics->ulmComplex[i][j], gsl_complex_conjugate(gsl_complex_mul_real(gsl_complex_polar(1.0,(ts_double)m*coord.e2),cvtx->solAngle*cvtx->relR*pow(-1,m)*gsl_sf_legendre_sphPlm(l,-m,cos(coord.e3)))) );
111
112         }
113             }
114         }
115     }
116     return TS_SUCCESS;
117 }
118
119 ts_bool storeUlmComplex2(ts_vesicle *vesicle){
120
121     ts_spharm *sph=vesicle->sphHarmonics;
122     ts_int i,j;
123     for(i=0;i<sph->l;i++){
124             for(j=0;j<2*i+1;j++){
125                 sph->sumUlm2[i][j]+=gsl_complex_abs2(sph->ulmComplex[i][j]);
126             }
127     }
128     sph->N++;
129     return TS_SUCCESS;
130 }
131
f06f5f 132
22cdfd 133 ts_double calculateKc(ts_vesicle *vesicle, ts_int lmin, ts_int lmax){
SP 134     ts_int min=lmin;
135     ts_int max=lmax; //vesicle->sphHarmonics->l-3;
9f2ad6 136     ts_long i,j;
0ee39c 137     ts_double retval, bval;
9f2ad6 138     gsl_matrix *A=gsl_matrix_alloc(max-min,2);
f06f5f 139     gsl_vector *tau=gsl_vector_alloc(2);
9f2ad6 140     gsl_vector *b=gsl_vector_alloc(max-min);
f06f5f 141     gsl_vector *x=gsl_vector_alloc(2);
9f2ad6 142     gsl_vector *res=gsl_vector_alloc(max-min);
f06f5f 143
0ee39c 144     //solving (A^T*A)*x=A^T*b
f06f5f 145     //fill the data for matrix A and vector b
9f2ad6 146     for(i=min;i<max;i++){
SP 147             gsl_matrix_set(A, i-min,0,(ts_double)((i-1)*(i+2)));
148             gsl_matrix_set(A, i-min,1,(ts_double)((i-1)*(i+2)*(i+1)*i));
22cdfd 149 //            fprintf(stderr,"%e %e\n", gsl_matrix_get(A,i-min,0), gsl_matrix_get(A,i-min,1));
9f2ad6 150             bval=0.0;
0ee39c 151             //average for m from 0..l (only positive m's)
9f2ad6 152             for(j=0;j<=i;j++){
0ee39c 153                 bval+=vesicle->sphHarmonics->sumUlm2[i][(j+i)];
SP 154             }
9f2ad6 155                 bval=bval/(ts_double)vesicle->sphHarmonics->N/(ts_double)(i+1);
0ee39c 156
9f2ad6 157             gsl_vector_set(b,i-min,1.0/bval);
22cdfd 158 //            fprintf(stderr,"%e\n", 1.0/gsl_vector_get(b,i-min));
f06f5f 159     }
0ee39c 160 //    fprintf(stderr,"b[2]=%e\n",gsl_vector_get(b,1));
f06f5f 161     gsl_linalg_QR_decomp(A,tau);
SP 162     gsl_linalg_QR_lssolve(A,tau,b,x,res);
0ee39c 163 //    fprintf(stderr,"kc=%e\n",gsl_vector_get(x,1));
SP 164     retval=gsl_vector_get(x,1);
f06f5f 165     gsl_matrix_free(A);
SP 166     gsl_vector_free(tau);
167     gsl_vector_free(b);
168     gsl_vector_free(x);
169     gsl_vector_free(res);
0ee39c 170     
SP 171     return retval;
f06f5f 172 }