Trisurf Monte Carlo simulator
Samo Penic
2012-06-07 5bb11d36948f9ccc243711d4e9caf4b19b3c384b
commit | author | age
88f451 1 #include<math.h>
SP 2 #include<stdlib.h>
3 #include "general.h"
4 #include "sh.h"
5
074a17 6
SP 7
8 ts_spharm *sph_init(ts_vertex_list *vlist, ts_uint l){
eb8605 9     ts_uint j,i;
074a17 10     ts_spharm *sph=(ts_spharm *)malloc(sizeof(ts_spharm));
SP 11
5bb11d 12     
eb8605 13     /* lets initialize Ylm for each vertex. */
SP 14     sph->Ylmi=(ts_double ***)calloc(l,sizeof(ts_double **));
5bb11d 15     for(i=0;i<l;i++){
SP 16             sph->Ylmi[i]=(ts_double **)calloc(2*i+1,sizeof(ts_double *));
17             for(j=0;j<(2*i+1);j++){
eb8605 18                 sph->Ylmi[i][j]=(ts_double *)calloc(vlist->n,sizeof(ts_double));
074a17 19             }
SP 20     }
21         
22     /* lets initialize ulm */
23     sph->ulm=(ts_double **)calloc(l,sizeof(ts_double *));
24     for(j=0;j<l;j++){
25         sph->ulm[j]=(ts_double *)calloc(2*j+1,sizeof(ts_double));
26     }
27
28
29     /* lets initialize co */
30     sph->co=(ts_double **)calloc(l,sizeof(ts_double *));
31     for(j=0;j<l;j++){
32         sph->co[j]=(ts_double *)calloc(2*j+1,sizeof(ts_double));
33     }
34
5bb11d 35     sph->l=l;   
SP 36
37     /* Calculate coefficients that will remain constant during all the simulation */ 
38    precomputeShCoeff(sph);
39     
074a17 40     return sph;
SP 41 }
42
43
eb8605 44 ts_bool sph_free(ts_spharm *sph){
SP 45     int i,j;
074a17 46     for(i=0;i<sph->l;i++){
SP 47         if(sph->ulm[i]!=NULL) free(sph->ulm[i]);
48         if(sph->co[i]!=NULL) free(sph->co[i]);
49     }
50     if(sph->co != NULL) free(sph->co);
51     if(sph->ulm !=NULL) free(sph->ulm);
52
eb8605 53         if(sph->Ylmi!=NULL) {
074a17 54             for(i=0;i<sph->l;i++){
eb8605 55                 if(sph->Ylmi[i]!=NULL){
5bb11d 56                     for(j=0;j<i*2+1;j++){
eb8605 57                         if(sph->Ylmi[i][j]!=NULL) free (sph->Ylmi[i][j]);
SP 58                     }
59                     free(sph->Ylmi[i]);
60                 }
074a17 61             }
eb8605 62             free(sph->Ylmi);
074a17 63         }
eb8605 64
074a17 65     free(sph);
SP 66     return TS_SUCCESS;
67 }
68
88f451 69 /* Gives you legendre polynomials. Taken from NR, p. 254 */
SP 70 ts_double plgndr(ts_int l, ts_int m, ts_float x){
71     ts_double fact, pll, pmm, pmmp1, somx2;
72     ts_int i,ll;
73
74 #ifdef TS_DOUBLE_DOUBLE
75     if(m<0 || m>l || fabs(x)>1.0)
76         fatal("Bad arguments in routine plgndr",1);
77 #endif
78 #ifdef TS_DOUBLE_FLOAT
79     if(m<0 || m>l || fabsf(x)>1.0)
80         fatal("Bad arguments in routine plgndr",1);
81 #endif
82 #ifdef TS_DOUBLE_LONGDOUBLE
83     if(m<0 || m>l || fabsl(x)>1.0)
84         fatal("Bad arguments in routine plgndr",1);
85 #endif
86     pmm=1.0;
87     if (m>0) {
88 #ifdef TS_DOUBLE_DOUBLE
89         somx2=sqrt((1.0-x)*(1.0+x));
90 #endif
91 #ifdef TS_DOUBLE_FLOAT
92         somx2=sqrtf((1.0-x)*(1.0+x));
93 #endif
94 #ifdef TS_DOUBLE_LONGDOUBLE
95         somx2=sqrtl((1.0-x)*(1.0+x));
96 #endif
97         fact=1.0;
98         for (i=1; i<=m;i++){
99             pmm *= -fact*somx2;
100             fact +=2.0;
101         }
102     }
103
104     if (l == m) return pmm;
105     else {
106         pmmp1=x*(2*m+1)*pmm;
107         if(l==(m+1)) return(pmmp1);
108         else {
109             pll=0; /* so it can not be uninitialized */
110             for(ll=m+2;ll<=l;ll++){
111                 pll=(x*(2*ll-1)*pmmp1-(ll+m-1)*pmm)/(ll-m);
112                 pmm=pmmp1;
113                 pmmp1=pll;
114             }
115             return(pll);
116         }
117     }
118 }
119
120
523bf1 121
SP 122 ts_bool precomputeShCoeff(ts_spharm *sph){
074a17 123     ts_int i,j,al,am;
SP 124     ts_double **co=sph->co;
523bf1 125     for(i=0;i<sph->l;i++){
074a17 126         al=i+1;
SP 127         sph->co[i][i+1]=sqrt((2.0*al+1.0)/2.0/M_PI);
128         for(j=0;j<al;j++){
129             am=j+1;
130             sph->co[i][i+1+j]=co[i][i+j]*sqrt(1.0/(al-am+1)/(al+am));
131             sph->co[i][i+1-j]=co[i][i+1+j];
523bf1 132         }
074a17 133         co[i][2*i]=co[i][2*i]*sqrt(1.0/(2.0*al));
SP 134         co[i][0]=co[i][2*i+1];
135         co[i][i+1]=sqrt((2.0*al+1.0)/4.0/M_PI);
523bf1 136     }
SP 137     return TS_SUCCESS;
138
139 }
140
141
88f451 142 /*Computes Y(l,m,theta,fi) (Miha's definition that is different from common definition for  factor srqt(1/(2*pi)) */
SP 143 ts_double shY(ts_int l,ts_int m,ts_double theta,ts_double fi){
144     ts_double fac1, fac2, K;
145     int i;
146
147     if(l<0 || m>l || m<-l)
148         fatal("Error using shY function!",1);
149
150     fac1=1.0;
af3bad 151     for(i=1; i<=l-abs(m);i++){
88f451 152         fac1 *= i;
SP 153     }
154     fac2=1.0;
af3bad 155     for(i=1; i<=l+abs(m);i++){
88f451 156         fac2 *= i;
SP 157     }
158
159     if(m==0){
160         K=sqrt(1.0/(2.0*M_PI));
161     }
162     else if (m>0) {
163         K=sqrt(1.0/(M_PI))*cos(m*fi);
164     } 
165     else {
166         //K=pow(-1.0,abs(m))*sqrt(1.0/(2.0*M_PI))*cos(m*fi);
167         if(abs(m)%2==0)
af3bad 168         K=sqrt(1.0/(M_PI))*cos(m*fi);
88f451 169         else
af3bad 170         K=-sqrt(1.0/(M_PI))*cos(m*fi);
88f451 171     }
SP 172     
173     return K*sqrt((2.0*l+1.0)/2.0*fac1/fac2)*plgndr(l,abs(m),cos(theta));    
174 }
523bf1 175
SP 176
177 /* Function transforms coordinates from cartesian to spherical coordinates
178  * (r,phi, theta). */
179 ts_bool *cart2sph(ts_coord *coord, ts_double x, ts_double y, ts_double z){
180     coord->coord_type=TS_COORD_SPHERICAL;
181 #ifdef TS_DOUBLE_DOUBLE
182     coord->e1=sqrt(x*x+y*y+z*z);
183     if(z==0) coord->e3=M_PI/2.0;
184     else coord->e3=atan(sqrt(x*x+y*y)/z);
185     coord->e2=atan2(y,x);
186 #endif
187 #ifdef TS_DOUBLE_FLOAT
188     coord->e1=sqrtf(x*x+y*y+z*z);
189     if(z==0) coord->e3=M_PI/2.0;
190     else coord->e3=atanf(sqrtf(x*x+y*y)/z);
191     coord->e2=atan2f(y,x);
192 #endif
193 #ifdef TS_DOUBLE_LONGDOUBLE
194     coord->e1=sqrtl(x*x+y*y+z*z);
195     if(z==0) coord->e3=M_PI/2.0;
196     else coord->e3=atanl(sqrtl(x*x+y*y)/z);
197     coord->e2=atan2l(y,x);
198 #endif
199
200     return TS_SUCCESS;
201 }
202
203 /* Function returns radius of the sphere with the same volume as vesicle (r0) */
204 ts_double getR0(ts_vesicle *vesicle){
205     ts_double r0;
206  #ifdef TS_DOUBLE_DOUBLE
207    r0=pow(vesicle->volume*3.0/4.0/M_PI,1.0/3.0);
208 #endif
209 #ifdef TS_DOUBLE_FLOAT
210    r0=powf(vesicle->volume*3.0/4.0/M_PI,1.0/3.0);
211 #endif
212 #ifdef TS_DOUBLE_LONGDOUBLE
213    r0=powl(vesicle->volume*3.0/4.0/M_PI,1.0/3.0);
214 #endif
215     return r0;
216 }
217
218
219 ts_bool preparationSh(ts_vesicle *vesicle, ts_double r0){
220 //TODO: before calling or during the call calculate area of each triangle! Can
221 //be also done after vertexmove and bondflip //
222     ts_uint i,j;
223     ts_vertex **vtx=vesicle->vlist->vtx;
224     ts_vertex *cvtx;
225     ts_triangle *ctri;
226     ts_double centroid[3];
227     ts_double r;
228     for (i=0;  i<vesicle->vlist->n; i++){
229         cvtx=vtx[i];
230         //cvtx->projArea=4.0*M_PI/1447.0*(cvtx->x*cvtx->x+cvtx->y*cvtx->y+cvtx->z*cvtx->z)/r0/r0;
231         cvtx->projArea=0.0;
232
233         /* go over all triangles that have a common vertex i */
234         for(j=0; j<cvtx->tristar_no; j++){
235             ctri=cvtx->tristar[j];
236             centroid[0]=(ctri->vertex[0]->x + ctri->vertex[1]->x + ctri->vertex[2]->x)/3.0;
237             centroid[1]=(ctri->vertex[0]->y + ctri->vertex[1]->y + ctri->vertex[2]->y)/3.0;
238             centroid[2]=(ctri->vertex[0]->z + ctri->vertex[1]->z + ctri->vertex[2]->z)/3.0;
239         /* calculating projArea+= area(triangle)*cos(theta) */
240 #ifdef TS_DOUBLE_DOUBLE
241             cvtx->projArea = cvtx->projArea + ctri->area*(-centroid[0]*ctri->xnorm - centroid[1]*ctri->ynorm - centroid[2]*ctri->znorm)/ sqrt(centroid[0]*centroid[0]+centroid[1]*centroid[1]+centroid[2]*centroid[2]);
242 #endif
243 #ifdef TS_DOUBLE_FLOAT
244             cvtx->projArea = cvtx->projArea + ctri->area*(-centroid[0]*ctri->xnorm - centroid[1]*ctri->ynorm - centroid[2]*ctri->znorm)/ sqrtf(centroid[0]*centroid[0]+centroid[1]*centroid[1]+centroid[2]*centroid[2]);
245 #endif
246 #ifdef TS_DOUBLE_LONGDOUBLE
247             cvtx->projArea = cvtx->projArea + ctri->area*(-centroid[0]*ctri->xnorm - centroid[1]*ctri->ynorm - centroid[2]*ctri->znorm)/ sqrtl(centroid[0]*centroid[0]+centroid[1]*centroid[1]+centroid[2]*centroid[2]);
248 #endif
249         }
250
251     cvtx->projArea=cvtx->projArea/3.0;
252         //we dont store spherical coordinates of vertex, so we have to calculate
253         //r(i) at this point.
254 #ifdef TS_DOUBLE_DOUBLE
255     r=sqrt(cvtx->x*cvtx->x+cvtx->y*cvtx->y+cvtx->z*cvtx->z);
256 #endif
257 #ifdef TS_DOUBLE_FLOAT
258     r=sqrtf(cvtx->x*cvtx->x+cvtx->y*cvtx->y+cvtx->z*cvtx->z);
259 #endif
260 #ifdef TS_DOUBLE_LONGDOUBLE
261     r=sqrtl(cvtx->x*cvtx->x+cvtx->y*cvtx->y+cvtx->z*cvtx->z);
262 #endif
263     cvtx->relR=(r-r0)/r0;
264     cvtx->solAngle=cvtx->projArea/cvtx->relR * cvtx->projArea/cvtx->relR;
265     }
266     return TS_SUCCESS;
267 }
268
269
270
271 ts_bool calculateYlmi(ts_vesicle *vesicle){
272     ts_uint i,j,k;
273     ts_spharm *sph=vesicle->sphHarmonics;
274     ts_coord *coord=(ts_coord *)malloc(sizeof(ts_coord));
275     ts_double fi, theta;
074a17 276     ts_vertex *cvtx;
523bf1 277     for(k=0;k<vesicle->vlist->n;k++){
074a17 278         cvtx=vesicle->vlist->vtx[k];
eb8605 279         sph->Ylmi[0][0][k]=sqrt(1.0/4.0/M_PI);
074a17 280         cart2sph(coord,cvtx->x, cvtx->y, cvtx->z);
523bf1 281         fi=coord->e2;
SP 282         theta=coord->e3; 
283         for(i=0; i<sph->l; i++){
284             for(j=0;j<i;j++){
eb8605 285                 sph->Ylmi[i][j][k]=sph->co[i][j]*cos((j-i-1)*fi)*pow(-1,j-i-1)*plgndr(i,abs(j-i-1),cos(theta));
523bf1 286             }
eb8605 287                 sph->Ylmi[i][j+1][k]=sph->co[i][j+1]*plgndr(i,0,cos(theta));
523bf1 288             for(j=sph->l;j<2*i;j++){
eb8605 289                 sph->Ylmi[i][j][k]=sph->co[i][j]*sin((j-i-1)*fi)*plgndr(i,j-i-1,cos(theta));
523bf1 290             }
SP 291         }
292
293     }
294     free(coord);
295     return TS_SUCCESS;
296 }
297
298
299
300 ts_bool calculateUlm(ts_vesicle *vesicle){
301     ts_uint i,j,k;
302     ts_vertex *cvtx;
303     for(i=0;i<vesicle->sphHarmonics->l;i++){
304         for(j=0;j<2*i;j++) vesicle->sphHarmonics->ulm[i][j]=0.0;
305     }
306
307 //TODO: call calculateYlmi !!!
308
309
310     for(k=0;k<vesicle->vlist->n; k++){
311         cvtx=vesicle->vlist->vtx[k];
312         for(i=0;i<vesicle->sphHarmonics->l;i++){
313             for(j=0;j<2*i;j++){
eb8605 314                 vesicle->sphHarmonics->ulm[i][j]+= cvtx->solAngle*cvtx->relR*vesicle->sphHarmonics->Ylmi[i][j][k];
523bf1 315             }
SP 316
317         }
318     }
319
320     return TS_SUCCESS;
321 }