commit | author | age
|
e555c0
|
1 |
from pyzbar.pyzbar import decode |
SP |
2 |
import cv2 |
|
3 |
import numpy as np |
|
4 |
import math |
|
5 |
|
|
6 |
|
|
7 |
|
|
8 |
|
|
9 |
class Paper(): |
|
10 |
|
|
11 |
def __init__(self, filename=None): |
|
12 |
self.filename=filename |
|
13 |
self.invalid=None |
|
14 |
self.QRData=None |
|
15 |
self.errors=[] |
|
16 |
self.warnings=[] |
|
17 |
if filename is not None: |
|
18 |
self.loadImage(filename) |
|
19 |
self.runOcr() |
|
20 |
|
|
21 |
|
|
22 |
def loadImage(self, filename, rgbchannel=0): |
|
23 |
self.img=cv2.imread(filename,rgbchannel) |
|
24 |
if self.img is None: |
|
25 |
self.errors.append("File could not be loaded!") |
|
26 |
self.invalid=True |
|
27 |
return |
|
28 |
self.imgHeight, self.imgWidth = self.img.shape[0:2] |
|
29 |
|
|
30 |
def saveImage(self, filename='debug_image.png'): |
|
31 |
cv2.imwrite(filename, self.img) |
|
32 |
|
|
33 |
def runOcr(self): |
|
34 |
if self.invalid==True: |
|
35 |
return |
|
36 |
self.decodeQRandRotate() |
|
37 |
self.imgTreshold() |
|
38 |
skewAngle=0 |
|
39 |
# try: |
|
40 |
# skewAngle=self.getSkewAngle() |
|
41 |
# except: |
|
42 |
# self.errors.append("Could not determine skew angle!") |
|
43 |
# self.rotateAngle(skewAngle) |
|
44 |
|
|
45 |
self.generateAnswerMatrix() |
|
46 |
|
|
47 |
self.saveImage() |
|
48 |
|
|
49 |
def decodeQRandRotate(self): |
|
50 |
if self.invalid == True: |
|
51 |
return |
|
52 |
blur = cv2.blur(self.img,(3,3)) |
|
53 |
d=decode(blur) |
|
54 |
self.img=blur |
|
55 |
if len(d) == 0: |
|
56 |
self.errors.append("QR code could not be found!") |
|
57 |
self.data=None |
|
58 |
self.invalid=True |
|
59 |
return |
|
60 |
self.QRDecode=d |
|
61 |
self.QRData=d[0].data |
|
62 |
xpos=d[0].rect.left |
|
63 |
ypos=d[0].rect.top |
|
64 |
#check if image is rotated wrongly |
|
65 |
if xpos>self.imgHeight/2.0 and ypost>self.imgWidth/2.0: |
|
66 |
self.rotate(180) |
|
67 |
|
|
68 |
def rotateAngle(self,angle=0): |
|
69 |
rot_mat = cv2.getRotationMatrix2D((self.imgHeight/2, self.imgWidth/2), angle, 1.0) |
|
70 |
result = cv2.warpAffine(self.img, |
|
71 |
rot_mat, |
|
72 |
(self.imgHeight, self.imgWidth), |
|
73 |
flags=cv2.INTER_CUBIC, |
|
74 |
borderMode=cv2.BORDER_CONSTANT, |
|
75 |
borderValue=(255, 255, 255)) |
|
76 |
|
|
77 |
self.img=result |
|
78 |
self.imgHeight, self.imgWidth = self.img.shape[0:2] |
|
79 |
|
|
80 |
|
|
81 |
#todo, make better tresholding |
|
82 |
def imgTreshold(self): |
|
83 |
(self.thresh, self.bwimg) = cv2.threshold(self.img, 128, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU) |
|
84 |
|
|
85 |
|
|
86 |
def getSkewAngle(self): |
|
87 |
neg = 255 - self.bwimg # get negative image |
|
88 |
cv2.imwrite('debug_1.png', neg) |
|
89 |
|
|
90 |
angle_counter = 0 # number of angles |
|
91 |
angle = 0.0 # collects sum of angles |
|
92 |
cimg = cv2.cvtColor(self.img,cv2.COLOR_GRAY2BGR) |
|
93 |
|
|
94 |
# get all the Hough lines |
|
95 |
for line in cv2.HoughLinesP(neg, 1, np.pi/180, 325): |
|
96 |
x1, y1, x2, y2 = line[0] |
|
97 |
cv2.line(cimg,(x1,y1), (x2,y2), (0,0,255),2) |
|
98 |
# calculate the angle (in radians) |
|
99 |
this_angle = np.arctan2(y2 - y1, x2 - x1) |
|
100 |
if this_angle and abs(this_angle) <= 10: |
|
101 |
# filtered zero degree and outliers |
|
102 |
angle += this_angle |
|
103 |
angle_counter += 1 |
|
104 |
|
|
105 |
# the skew is calculated of the mean of the total angles, #try block helps with division by zero. |
|
106 |
try: |
|
107 |
skew = np.rad2deg(angle / angle_counter) #the 1.2 factor is just experimental.... |
|
108 |
except: |
|
109 |
skew=0 |
|
110 |
|
|
111 |
cv2.imwrite('debug_2.png',cimg) |
|
112 |
return skew |
|
113 |
|
|
114 |
|
|
115 |
def locateUpMarkers(self, threshold=0.8, height=200): |
|
116 |
template = cv2.imread('template.png',0) |
|
117 |
w, h = template.shape[::-1] |
|
118 |
crop_img = self.img[0:height, :] |
|
119 |
res = cv2.matchTemplate(crop_img,template,cv2.TM_CCOEFF_NORMED) |
|
120 |
loc = np.where( res >= threshold) |
|
121 |
cimg = cv2.cvtColor(crop_img,cv2.COLOR_GRAY2BGR) |
|
122 |
#remove false matching of the squares in qr code |
|
123 |
loc_filtered_x=[] |
|
124 |
loc_filtered_y=[] |
|
125 |
min_y=np.min(loc[0]) |
|
126 |
for pt in zip(*loc[::-1]): |
|
127 |
if(pt[1]<min_y+20): |
|
128 |
loc_filtered_y.append(pt[1]) |
|
129 |
loc_filtered_x.append(pt[0]) |
|
130 |
#order by x coordinate |
|
131 |
loc_filtered_x,loc_filtered_y = zip(*sorted(zip(loc_filtered_x, loc_filtered_y))) |
|
132 |
#loc=[loc_filtered_y,loc_filtered_x] |
|
133 |
#remove duplicates |
|
134 |
a=np.diff(loc_filtered_x)>40 |
|
135 |
a=np.append(a,True) |
|
136 |
loc_filtered_x=np.array(loc_filtered_x) |
|
137 |
loc_filtered_y=np.array(loc_filtered_y) |
|
138 |
loc=[loc_filtered_y[a],loc_filtered_x[a]] |
|
139 |
for pt in zip(*loc[::-1]): |
|
140 |
cv2.rectangle(cimg, pt, (pt[0] + w, pt[1] + h), (0,255,255), 2) |
|
141 |
|
|
142 |
|
|
143 |
cv2.imwrite('debug_3.png',cimg) |
|
144 |
|
|
145 |
self.xMarkerLocations=loc |
|
146 |
return loc |
|
147 |
|
|
148 |
def locateRightMarkers(self, threshold=0.8, width=200): |
|
149 |
template = cv2.imread('template.png',0) |
|
150 |
w, h = template.shape[::-1] |
|
151 |
crop_img = self.img[:, -width:] |
|
152 |
res = cv2.matchTemplate(crop_img,template,cv2.TM_CCOEFF_NORMED) |
|
153 |
loc = np.where( res >= threshold) |
|
154 |
cimg = cv2.cvtColor(crop_img,cv2.COLOR_GRAY2BGR) |
|
155 |
#remove false matching of the squares in qr code |
|
156 |
loc_filtered_x=[] |
|
157 |
loc_filtered_y=[] |
|
158 |
max_x=np.max(loc[1]) |
|
159 |
for pt in zip(*loc[::-1]): |
|
160 |
if(pt[1]>max_x-20): |
|
161 |
loc_filtered_y.append(pt[1]) |
|
162 |
loc_filtered_x.append(pt[0]) |
|
163 |
#order by y coordinate |
|
164 |
loc_filtered_y,loc_filtered_x = zip(*sorted(zip(loc_filtered_y, loc_filtered_x))) |
|
165 |
#loc=[loc_filtered_y,loc_filtered_x] |
|
166 |
#remove duplicates |
|
167 |
a=np.diff(loc_filtered_y)>40 |
|
168 |
a=np.append(a,True) |
|
169 |
loc_filtered_x=np.array(loc_filtered_x) |
|
170 |
loc_filtered_y=np.array(loc_filtered_y) |
|
171 |
loc=[loc_filtered_y[a],loc_filtered_x[a]] |
|
172 |
for pt in zip(*loc[::-1]): |
|
173 |
cv2.rectangle(cimg, pt, (pt[0] + w, pt[1] + h), (0,255,255), 2) |
|
174 |
|
|
175 |
|
|
176 |
cv2.imwrite('debug_4.png',cimg) |
|
177 |
|
|
178 |
self.yMarkerLocations=[loc[0], loc[1]+self.imgWidth-width] |
|
179 |
return self.yMarkerLocations |
|
180 |
|
|
181 |
|
|
182 |
def generateAnswerMatrix(self): |
|
183 |
self.locateUpMarkers() |
|
184 |
self.locateRightMarkers() |
|
185 |
|
|
186 |
roixoff=10 |
|
187 |
roiyoff=5 |
|
188 |
roiwidth=50 |
|
189 |
roiheight=roiwidth |
|
190 |
totpx=roiwidth*roiheight |
|
191 |
|
|
192 |
self.answerMatrix=[] |
|
193 |
for y in self.yMarkerLocations[0]: |
|
194 |
oneline=[] |
|
195 |
for x in self.xMarkerLocations[1]: |
|
196 |
roi=self.bwimg[ y-roiyoff:y+int(roiheight-roiyoff),x-roixoff:x+int(roiwidth-roixoff)] |
|
197 |
#cv2.imwrite('ans_x'+str(x)+'_y_'+str(y)+'.png',roi) |
|
198 |
black=totpx-cv2.countNonZero(roi) |
|
199 |
oneline.append(black/totpx) |
|
200 |
self.answerMatrix.append(oneline) |
|
201 |
|