#include #include #include #include #include "general.h" #include "constvol.h" #include "triangle.h" #include "energy.h" #include "vertex.h" #include "cell.h" ts_bool constvolume(ts_vesicle *vesicle, ts_vertex *vtx_avoid, ts_double Vol, ts_double *retEnergy, ts_vertex **vtx_moved_retval, ts_vertex **vtx_backup){ ts_vertex *vtx_moved; ts_uint vtxind,i,j; ts_uint Ntries=3; ts_vertex *backupvtx; ts_double Rv, dh, dvol, volFirst, voldiff, oenergy,delta_energy; backupvtx=(ts_vertex *)calloc(sizeof(ts_vertex),10); ts_double l0 = (1.0 + sqrt(vesicle->dmax))/2.0; //make this a global constant if necessary for(i=0;ivlist->n; vtx_moved=vesicle->vlist->vtx[vtxind]; /* chosen vertex must not be a nearest neighbour. TODO: probably must * extend search in case of bondflip */ if(vtx_moved==vtx_avoid) continue; for(j=0;jneigh_no;j++){ if(vtx_moved->neigh[j]==vtx_avoid) continue; } memcpy((void *)&backupvtx[0],(void *)vtx_moved,sizeof(ts_vertex)); //move vertex in specified direction. first try, test move! Rv=sqrt(pow(vtx_moved->x,2)+pow(vtx_moved->y,2)+pow(vtx_moved->z,2)); dh=2.0*Vol/(sqrt(3.0)*l0*l0); vtx_moved->x=vtx_moved->x*(1.0-dh/Rv); vtx_moved->y=vtx_moved->y*(1.0-dh/Rv); vtx_moved->z=vtx_moved->z*(1.0-dh/Rv); //check for constraints if(constvolConstraintCheck(vesicle, vtx_moved)==TS_FAIL){ vtx_moved=memcpy((void *)vtx_moved,(void *)&backupvtx[0],sizeof(ts_vertex)); continue; } // All checks OK! for(j=0;jneigh_no;j++){ memcpy((void *)&backupvtx[j+1],(void *)vtx_moved->neigh[j],sizeof(ts_vertex)); } dvol=0.0; for(j=0;jtristar_no;j++){ dvol-=vtx_moved->tristar[j]->volume; } volFirst=dvol; for(j=0;jtristar_no;j++){ triangle_normal_vector(vtx_moved->tristar[j]); dvol+=vtx_moved->tristar[j]->volume; } //TODO: here there is a bug. Don't know where, but preliminary success can //happen sometimes. And when I do this checks, constant value is not achieved //anymore /* voldiff=dvol-Vol; if(fabs(voldiff)/vesicle->volume < vesicle->tape->constvolprecision){ //calculate energy, return change in energy... oenergy=vtx_moved->energy; energy_vertex(vtx_moved); delta_energy=vtx_moved->xk*(vtx_moved->energy - oenergy); //the same is done for neighbouring vertices for(j=0;jneigh_no;j++){ oenergy=vtx_moved->neigh[j]->energy; energy_vertex(vtx_moved->neigh[j]); delta_energy+=vtx_moved->neigh[j]->xk*(vtx_moved->neigh[j]->energy-oenergy); } *retEnergy=delta_energy; *vtx_backup=backupvtx; *vtx_moved_retval=vtx_moved; fprintf(stderr, "Preliminary success\n"); return TS_SUCCESS; } */ // fprintf(stderr, "Step 2 success\n"); //do it again ;) dh=Vol*dh/dvol; vtx_moved=memcpy((void *)vtx_moved,(void *)&backupvtx[0],sizeof(ts_vertex)); vtx_moved->x=vtx_moved->x*(1-dh/Rv); vtx_moved->y=vtx_moved->y*(1-dh/Rv); vtx_moved->z=vtx_moved->z*(1-dh/Rv); //check for constraints if(constvolConstraintCheck(vesicle, vtx_moved)==TS_FAIL){ for(j=0;jneigh_no;j++){ memcpy((void *)vtx_moved->neigh[j],(void *)&backupvtx[j+1],sizeof(ts_vertex)); } vtx_moved=memcpy((void *)vtx_moved,(void *)&backupvtx[0],sizeof(ts_vertex)); //also, restore normals for(j=0;jtristar_no;j++) triangle_normal_vector(vtx_moved->tristar[j]); continue; } dvol=volFirst; for(j=0;jtristar_no;j++){ triangle_normal_vector(vtx_moved->tristar[j]); dvol+=vtx_moved->tristar[j]->volume; } voldiff=dvol-Vol; if(fabs(voldiff)/vesicle->volume < vesicle->tape->constvolprecision){ //calculate energy, return change in energy... // fprintf(stderr, "Constvol success! %e\n",voldiff); oenergy=vtx_moved->energy; energy_vertex(vtx_moved); delta_energy=vtx_moved->xk*(vtx_moved->energy - oenergy); //the same is done for neighbouring vertices for(j=0;jneigh_no;j++){ oenergy=vtx_moved->neigh[j]->energy; energy_vertex(vtx_moved->neigh[j]); delta_energy+=vtx_moved->neigh[j]->xk*(vtx_moved->neigh[j]->energy-oenergy); } *retEnergy=delta_energy; *vtx_backup=backupvtx; *vtx_moved_retval=vtx_moved; return TS_SUCCESS; } } free(backupvtx); return TS_FAIL; } ts_bool constvolConstraintCheck(ts_vesicle *vesicle, ts_vertex *vtx){ ts_uint i; ts_double dist; ts_uint cellidx; //distance with neighbours check for(i=0;ineigh_no;i++){ dist=vtx_distance_sq(vtx,vtx->neigh[i]); if(dist<1.0 || dist>vesicle->dmax) { return TS_FAIL; } } // Distance with grafted poly-vertex check: if(vtx->grafted_poly!=NULL){ dist=vtx_distance_sq(vtx,vtx->grafted_poly->vlist->vtx[0]); if(dist<1.0 || dist>vesicle->dmax) { return TS_FAIL; } } // Nucleus penetration check: if (vtx->x*vtx->x + vtx->y*vtx->y + vtx->z*vtx->z < vesicle->R_nucleus){ return TS_FAIL; } //self avoidance check with distant vertices cellidx=vertex_self_avoidance(vesicle, vtx); //check occupation number return cell_occupation_number_and_internal_proximity(vesicle->clist,cellidx,vtx); } ts_bool constvolumerestore(ts_vertex *vtx_moved,ts_vertex *vtx_backup){ ts_uint j; memcpy((void *)vtx_moved,(void *)&vtx_backup[0],sizeof(ts_vertex)); for(j=0;jneigh_no;j++){ memcpy((void *)vtx_moved->neigh[j],(void *)&vtx_backup[j+1],sizeof(ts_vertex)); } for(j=0;jtristar_no;j++) triangle_normal_vector(vtx_moved->tristar[j]); free(vtx_backup); return TS_SUCCESS; } ts_bool constvolumeaccept(ts_vesicle *vesicle,ts_vertex *vtx_moved, ts_vertex *vtx_backup){ ts_bool retval; ts_uint cellidx=vertex_self_avoidance(vesicle, vtx_moved); if(vtx_moved->cell!=vesicle->clist->cell[cellidx]){ retval=cell_add_vertex(vesicle->clist->cell[cellidx],vtx_moved); if(retval==TS_SUCCESS) cell_remove_vertex(vtx_backup[0].cell,vtx_moved); } free(vtx_backup); return TS_SUCCESS; }