#include #include #include #include "general.h" #include "vertex.h" #include "bond.h" #include "vesicle.h" #include "vertex.h" #include "triangle.h" #include "initial_distribution.h" #include "energy.h" ts_vesicle *initial_distribution_dipyramid(ts_uint nshell, ts_uint ncmax1, ts_uint ncmax2, ts_uint ncmax3, ts_double stepsize){ ts_fprintf(stderr,"Starting initial_distribution on vesicle with %u shells!...\n",nshell); ts_bool retval; ts_uint no_vertices=5*nshell*nshell+2; ts_vesicle *vesicle=init_vesicle(no_vertices,ncmax1,ncmax2,ncmax3,stepsize); vesicle->nshell=nshell; retval = vtx_set_global_values(vesicle); retval = pentagonal_dipyramid_vertex_distribution(vesicle->vlist); retval = init_vertex_neighbours(vesicle->vlist); retval = init_sort_neighbours(vesicle->vlist); retval = init_vesicle_bonds(vesicle); retval = init_triangles(vesicle); retval = init_triangle_neighbours(vesicle); retval = init_common_vertex_triangle_neighbours(vesicle); retval = mean_curvature_and_energy(vesicle); ts_fprintf(stderr,"initial_distribution finished!\n"); return vesicle; } ts_bool pentagonal_dipyramid_vertex_distribution(ts_vertex_list *vlist){ /* Some often used relations */ const ts_double s1= sin(2.0*M_PI/5.0); const ts_double s2= sin(4.0*M_PI/5.0); const ts_double c1= cos(2.0*M_PI/5.0); const ts_double c2= cos(4.0*M_PI/5.0); /* Calculates projection lenght of an edge bond to pentagram plane */ const ts_double xl0=A0/(2.0*sin(M_PI/5.0)); #ifdef TS_DOUBLE_DOUBLE const ts_double z0=sqrt(pow(A0,2)-pow(xl0,2)); #endif #ifdef TS_DOUBLE_FLOAT const ts_double z0=sqrtf(powf(A0,2)-powf(xl0,2)); #endif #ifdef TS_DOUBLE_LONGDOUBLE const ts_double z0=sqrtl(powl(A0,2)-powl(xl0,2)); #endif // const z0=sqrt(A0*A0 -xl0*xl0); /* I could use pow function but if pow is used make a check on the float type. If float then powf, if long double use powl */ /*placeholder for the pointer to vertex datastructure list... DIRTY: actual pointer points towards invalid address, one position before actual beginning of the list... This is to solve the difference between 1 based indexing in original program in fortran and 0 based indexing in C. All algorithms remain unchanged because of this!*/ ts_vertex **vtx=vlist->vtx -1 ; ts_uint nshell=(ts_uint)( sqrt((ts_double)(vlist->n-2)/5)); // printf("nshell=%u\n",nshell); ts_uint i,n0; // some for loop prereq ts_int j,k; ts_double dx,dy; // end loop prereq /* topmost vertex */ vtx[1]->data->x=0.0; vtx[1]->data->y=0.0; vtx[1]->data->z=z0*(ts_double)nshell; /* starting from to in circular order on pentagrams */ for(i=1;i<=nshell;i++){ n0=2+5*i*(i-1)/2; //-1 would be for the reason that C index starts from 0 vtx[n0]->data->x=0.0; vtx[n0]->data->y=(ts_double)i*xl0; vtx[n0+i]->data->x=vtx[n0]->data->y*s1; vtx[n0+i]->data->y=vtx[n0]->data->y*c1; vtx[n0+2*i]->data->x=vtx[n0]->data->y*s2; vtx[n0+2*i]->data->y=vtx[n0]->data->y*c2; vtx[n0+3*i]->data->x=-vtx[n0+2*i]->data->x; vtx[n0+3*i]->data->y=vtx[n0+2*i]->data->y; vtx[n0+4*i]->data->x=-vtx[n0+i]->data->x; vtx[n0+4*i]->data->y=vtx[n0+i]->data->y; } /* vertexes on the faces of the dipyramid */ for(i=1;i<=nshell;i++){ n0=2+5*i*(i-1)/2; // -1 would be because of C! for(j=1;j<=i-1;j++){ dx=(vtx[n0]->data->x-vtx[n0+4*i]->data->x)/(ts_double)i; dy=(vtx[n0]->data->y-vtx[n0+4*i]->data->y)/(ts_double)i; vtx[n0+4*i+j]->data->x=(ts_double)j*dx+vtx[n0+4*i]->data->x; vtx[n0+4*i+j]->data->y=(ts_double)j*dy+vtx[n0+4*i]->data->y; } for(k=0;k<=3;k++){ // I would be worried about zero starting of for dx=(vtx[n0+(k+1)*i]->data->x - vtx[n0+k*i]->data->x)/(ts_double) i; dy=(vtx[n0+(k+1)*i]->data->y - vtx[n0+k*i]->data->y)/(ts_double) i; for(j=1; j<=i-1;j++){ vtx[n0+k*i+j]->data->x= (ts_double)j*dx+vtx[n0+k*i]->data->x; vtx[n0+k*i+j]->data->y= (ts_double)j*dy+vtx[n0+k*i]->data->y; } } } for(i=1;i<=nshell;i++){ n0= 2+ 5*i*(i-1)/2; for(j=0;j<=5*i-1;j++){ vtx[n0+j]->data->z= z0*(ts_double)(nshell-i); // I would be worried about zero starting of for } } /* for botom part of dipyramide we calculate the positions of vertices */ for(i=2+5*nshell*(nshell+1)/2;i<=vlist->n;i++){ vtx[i]->data->x=vtx[vlist->n - i +1]->data->x; vtx[i]->data->y=vtx[vlist->n - i +1]->data->y; vtx[i]->data->z=-vtx[vlist->n - i +1]->data->z; } for(i=1;i<=vlist->n;i++){ for(j=1;j<=vlist->n;j++){ if(i!=j && vtx_distance_sq(vtx[i],vtx[j])<0.001){ printf("Vertices %u and %u are the same!\n",i,j); } } } return TS_SUCCESS; } ts_bool init_vertex_neighbours(ts_vertex_list *vlist){ ts_vertex **vtx=vlist->vtx -1; // take a look at dipyramid function for comment. const ts_double eps=0.001; //TODO: find out if you can use EPS from math.h ts_uint i,j; ts_double dist2; // Square of distance of neighbours /*this is not required if we zero all data in vertex structure at initialization */ /*if we force zeroing at initialization this for loop can safely be deleted */ //for(i=1;i<=vlist->n;i++){ // vtx[i].neigh_no=0; //} for(i=1;i<=vlist->n;i++){ for(j=1;j<=vlist->n;j++){ dist2=vtx_distance_sq(vtx[i],vtx[j]); if( (dist2>eps) && (dist2<(A0*A0+eps))){ //if it is close enough, but not too much close (solves problem of comparing when i==j) vtx_add_neighbour(vtx[i],vtx[j]); } } // printf ("vertex %u ima %u sosedov!\n",i,vtx[i]->data->neigh_no); } return TS_SUCCESS; } // TODO: with new datastructure can be rewritten. ts_bool init_sort_neighbours(ts_vertex_list *vlist){ ts_vertex **vtx=vlist->vtx -1; // take a look at dipyramid function for comment. ts_uint i,l,j,jj,jjj,k=0; ts_double eps=0.001; // Take a look if EPS from math.h can be used /*lets initialize memory for temporary vertex_list. Should we write a function instead */ ts_vertex_list *tvlist=init_vertex_list(vlist->n); ts_vertex **tvtx=tvlist->vtx -1; /* again to compensate for 0-indexing */ ts_double dist2; // Square of distance of neighbours ts_double direct; // Something, dont know what, but could be normal of some kind for(i=1;i<=vlist->n;i++){ k++; // WHY i IS NOT GOOD?? vtx_add_neighbour(tvtx[k], tvtx[vtx[i]->data->neigh[0]->idx+1]); //always add 1st jjj=1; jj=1; for(l=2;l<=vtx[i]->data->neigh_no;l++){ for(j=2;j<=vtx[i]->data->neigh_no;j++){ dist2=vtx_distance_sq(vtx[i]->data->neigh[j-1],vtx[i]->data->neigh[jj-1]); direct=vtx_direct(vtx[i],vtx[i]->data->neigh[j-1],vtx[i]->data->neigh[jj-1]); if( (fabs(dist2-A0*A0)<=eps) && (direct>0.0) && (j!=jjj) ){ vtx_add_neighbour(tvtx[k],tvtx[vtx[i]->data->neigh[j-1]->idx+1]); jjj=jj; jj=j; break; } } } } for(i=1;i<=vlist->n;i++){ for(j=1;j<=vtx[i]->data->neigh_no;j++){ if(vtx[i]->data->neigh_no!=tvtx[i]->data->neigh_no){ //doesn't work with nshell=1! // fprintf(stderr,"data1=%u data2=%u\n",vtx[i]->data->neigh_no,tvtx[i]->data->neigh_no); fatal("Number of neighbours not the same in init_sort_neighbours.",4); } //we must correct the pointers in original to point to their //neighbours according to indexes. Must be sure not to do it any //other way! Also, we need to repair the collection of bonds... vtx[i]->data->neigh[j-1]=vtx[tvtx[i]->data->neigh[j-1]->idx+1]; } } // Must free memory for temporary vertex array to avoid memory leak! HERE! NOW! // free_vertex(tvlist.vertex,tvlist.n); vtx_list_free(tvlist); return TS_SUCCESS; } ts_bool init_vesicle_bonds(ts_vesicle *vesicle){ ts_vertex_list *vlist=vesicle->vlist; ts_bond_list *blist=vesicle->blist; ts_vertex **vtx=vesicle->vlist->vtx - 1; // Because of 0 indexing /* lets make correct clockwise ordering of in nearest neighbour list */ ts_uint i,j,k; for(i=1;i<=vlist->n;i++){ for(j=i+1;j<=vlist->n;j++){ for(k=0;kdata->neigh_no;k++){ // has changed 0 to < instead of 1 and <= if(vtx[i]->data->neigh[k]==vtx[j]){ //if addresses matches it is the same bond_add(blist,vtx[i],vtx[j]); break; } } } } /* Let's make a check if the number of bonds is correct */ if((blist->n)!=3*(vlist->n-2)){ ts_fprintf(stderr,"Number of bonds is %u should be %u!\n", blist->n, 3*(vlist->n-2)); fatal("Number of bonds is not 3*(no_vertex-2).",4); } return TS_SUCCESS; } ts_bool init_triangles(ts_vesicle *vesicle){ ts_uint i,j,jj,k; ts_vertex **vtx=vesicle->vlist->vtx -1; // difference between 0 indexing and 1 indexing ts_triangle_list *tlist=vesicle->tlist; ts_double dist, direct; ts_double eps=0.001; // can we use EPS from math.h? k=0; for(i=1;i<=vesicle->vlist->n;i++){ for(j=1;j<=vtx[i]->data->neigh_no;j++){ for(jj=1;jj<=vtx[i]->data->neigh_no;jj++){ // ts_fprintf(stderr,"%u: (%u,%u) neigh_no=%u ",i,j,jj,vtx[i].neigh_no); // ts_fprintf(stderr,"%e, %e",vtx[i].neigh[j-1]->x,vtx[i].neigh[jj-1]->x); dist=vtx_distance_sq(vtx[i]->data->neigh[j-1],vtx[i]->data->neigh[jj-1]); direct=vtx_direct(vtx[i],vtx[i]->data->neigh[j-1],vtx[i]->data->neigh[jj-1]); if(fabs(dist-A0*A0)<=eps && direct < 0.0 && vtx[i]->data->neigh[j-1]->idx+1 > i && vtx[i]->data->neigh[jj-1]->idx+1 >i){ triangle_add(tlist,vtx[i],vtx[i]->data->neigh[j-1],vtx[i]->data->neigh[jj-1]); } } } } /* We check if all triangles have 3 vertices and if the number of triangles * matches the theoretical value. */ for(i=0;in;i++){ k=0; for(j=0;j<3;j++){ if(tlist->tria[i]->data->vertex[j]!=NULL) k++; } if(k!=3){ fatal("Some triangles has less than 3 vertices..",4); } } if(tlist->n!=2*(vesicle->vlist->n -2)){ ts_fprintf(stderr,"The number of triangles is %u but should be %u!\n",tlist->n,2*(vesicle->vlist->n -2)); fatal("The number of triangles doesn't match 2*(no_vertex -2).",4); } return TS_SUCCESS; } ts_bool init_triangle_neighbours(ts_vesicle *vesicle){ ts_uint i,j,nobo; ts_vertex *i1,*i2,*i3,*j1,*j2,*j3; // ts_vertex **vtx=vesicle->vlist->vtx -1; // difference between 0 indexing and 1 indexing ts_triangle_list *tlist=vesicle->tlist; ts_triangle **tria=tlist->tria -1; nobo=0; for(i=1;i<=tlist->n;i++){ i1=tria[i]->data->vertex[0]; i2=tria[i]->data->vertex[1]; i3=tria[i]->data->vertex[2]; for(j=1;j<=tlist->n;j++){ if(j==i) continue; j1=tria[j]->data->vertex[0]; j2=tria[j]->data->vertex[1]; j3=tria[j]->data->vertex[2]; if((i1==j1 && i3==j2) || (i1==j2 && i3==j3) || (i1==j3 && i3==j1)){ triangle_add_neighbour(tria[i],tria[j]); nobo++; } } } for(i=1;i<=tlist->n;i++){ i1=tria[i]->data->vertex[0]; i2=tria[i]->data->vertex[1]; i3=tria[i]->data->vertex[2]; for(j=1;j<=tlist->n;j++){ if(j==i) continue; j1=tria[j]->data->vertex[0]; j2=tria[j]->data->vertex[1]; j3=tria[j]->data->vertex[2]; if((i1==j1 && i2==j3) || (i1==j3 && i2==j2) || (i1==j2 && i2==j1)){ triangle_add_neighbour(tria[i],tria[j]); nobo++; } } } for(i=1;i<=tlist->n;i++){ i1=tria[i]->data->vertex[0]; i2=tria[i]->data->vertex[1]; i3=tria[i]->data->vertex[2]; for(j=1;j<=tlist->n;j++){ if(j==i) continue; j1=tria[j]->data->vertex[0]; j2=tria[j]->data->vertex[1]; j3=tria[j]->data->vertex[2]; if((i2==j1 && i3==j3) || (i2==j3 && i3==j2) || (i2==j2 && i3==j1)){ triangle_add_neighbour(tria[i],tria[j]); nobo++; } } } if(nobo != vesicle->blist->n*2) { ts_fprintf(stderr,"Number of triangles= %u, number of bonds= %u\n",nobo/2, vesicle->blist->n); fatal("Number of triangle neighbour pairs differs from double the number of bonds!",4); } return TS_SUCCESS; } ts_bool init_common_vertex_triangle_neighbours(ts_vesicle *vesicle){ ts_uint i,j,jp,k; ts_vertex *k1,*k2,*k3,*k4,*k5; ts_vertex **vtx=vesicle->vlist->vtx -1; // difference between 0 indexing and 1 indexing ts_triangle_list *tlist=vesicle->tlist; ts_triangle **tria=tlist->tria -1; for(i=1;i<=vesicle->vlist->n;i++){ for(j=1;j<=vtx[i]->data->neigh_no;j++){ k1=vtx[i]->data->neigh[j-1]; jp=j+1; if(j == vtx[i]->data->neigh_no) jp=1; k2=vtx[i]->data->neigh[jp-1]; for(k=1;k<=tlist->n;k++){ // VERY NON-OPTIMAL!!! too many loops (vlist.n * vtx.neigh * tlist.n )! k3=tria[k]->data->vertex[0]; k4=tria[k]->data->vertex[1]; k5=tria[k]->data->vertex[2]; // ts_fprintf(stderr,"%u %u: k=(%u %u %u)\n",k1,k2,k3,k4,k5); if((vtx[i]==k3 && k1==k4 && k2==k5) || (vtx[i]==k4 && k1==k5 && k2==k3) || (vtx[i]==k5 && k1==k3 && k2==k4)){ // ts_fprintf(stderr, "Added to tristar! "); vertex_add_tristar(vtx[i],tria[k]); } } } /* ts_fprintf(stderr,"TRISTAR for %u (%u):",i-1,vtx[i].tristar_no); for(j=0;jidx); } ts_fprintf(stderr,"\n"); */ } return TS_SUCCESS; } ts_bool init_normal_vectors(ts_triangle_list *tlist){ /* Normals point INSIDE vesicle */ ts_uint k; ts_triangle **tria=tlist->tria -1; //for 0 indexing for(k=1;k<=tlist->n;k++){ triangle_normal_vector(tria[k]); } return TS_SUCCESS; }