#include #include #include //#include "io.h" #include "general.h" #include "timestep.h" #include "vertexmove.h" #include "bondflip.h" #include "frame.h" #include "io.h" #include "stats.h" #include "sh.h" #include "shcomplex.h" #include "vesicle.h" ts_bool run_simulation(ts_vesicle *vesicle, ts_uint mcsweeps, ts_uint inititer, ts_uint iterations, ts_uint start_iteration){ ts_uint i, j,k; ts_double r0; ts_double l1,l2,l3,volume=0.0,area=0.0,vmsr,bfsr, vmsrt, bfsrt; ts_ulong epochtime; FILE *fd1; // char filename[255]; FILE *fd=fopen("statistics.csv","w"); if(fd==NULL){ fatal("Cannot open statistics.csv file for writing",1); } fprintf(fd, "Epoch OuterLoop VertexMoveSucessRate BondFlipSuccessRate Volume Area lamdba1 lambda2 lambda3\n"); centermass(vesicle); cell_occupation(vesicle); if(start_iteration=inititer){ write_vertex_xml_file(vesicle,i-inititer); write_master_xml_file("test.pvd"); epochtime=get_epoch(); gyration_eigen(vesicle, &l1, &l2, &l3); vesicle_volume(vesicle); //calculates just volume. Area is not added to ts_vesicle yet! get_area_volume(vesicle, &area,&volume); //that's why I must recalculate area (and volume for no particular reason). r0=getR0(vesicle); if(vesicle->sphHarmonics!=NULL){ preparationSh(vesicle,r0); //calculateYlmi(vesicle); calculateUlmComplex(vesicle); storeUlmComplex2(vesicle); saveAvgUlm2(vesicle); calculateKc(vesicle); fd1=fopen("state.dat","w"); fprintf(fd1,"%e %e\n",vesicle->volume, getR0(vesicle)); for(k=0;kvlist->n;k++){ fprintf(fd1,"%e %e %e %e %e\n", vesicle->vlist->vtx[k]->x, vesicle->vlist->vtx[k]->y, vesicle->vlist->vtx[k]->z, vesicle->vlist->vtx[k]->solAngle, vesicle->vlist->vtx[k]->relR ); } fclose(fd1); } fprintf(fd, "%lu %u %e %e %1.16e %1.16e %1.16e %1.16e %1.16e\n",epochtime,i,vmsr,bfsr,volume, area,l1,l2,l3); fflush(fd); // sprintf(filename,"timestep-%05d.pov",i-inititer); // write_pov_file(vesicle,filename); } } fclose(fd); return TS_SUCCESS; } ts_bool single_timestep(ts_vesicle *vesicle,ts_double *vmsr, ts_double *bfsr){ ts_bool retval; ts_double rnvec[3]; ts_uint i,j,b; ts_uint vmsrcnt=0; for(i=0;ivlist->n;i++){ rnvec[0]=drand48(); rnvec[1]=drand48(); rnvec[2]=drand48(); retval=single_verticle_timestep(vesicle,vesicle->vlist->vtx[i],rnvec); if(retval==TS_SUCCESS) vmsrcnt++; } ts_int bfsrcnt=0; for(i=0;i<3*vesicle->vlist->n;i++){ b=rand() % vesicle->blist->n; //find a bond and return a pointer to a bond... //call single_bondflip_timestep... retval=single_bondflip_timestep(vesicle,vesicle->blist->bond[b],rnvec); if(retval==TS_SUCCESS) bfsrcnt++; } for(i=0;ipoly_list->n;i++){ for(j=0;jpoly_list->poly[i]->vlist->n;j++){ rnvec[0]=drand48(); rnvec[1]=drand48(); rnvec[2]=drand48(); retval=single_poly_vertex_move(vesicle,vesicle->poly_list->poly[i],vesicle->poly_list->poly[i]->vlist->vtx[j],rnvec); } } for(i=0;ifilament_list->n;i++){ for(j=0;jfilament_list->poly[i]->vlist->n;j++){ rnvec[0]=drand48(); rnvec[1]=drand48(); rnvec[2]=drand48(); retval=single_filament_vertex_move(vesicle,vesicle->filament_list->poly[i],vesicle->filament_list->poly[i]->vlist->vtx[j],rnvec); } } // printf("Bondflip success rate in one sweep: %d/%d=%e\n", cnt,3*vesicle->blist->n,(double)cnt/(double)vesicle->blist->n/3.0); *vmsr=(ts_double)vmsrcnt/(ts_double)vesicle->vlist->n; *bfsr=(ts_double)bfsrcnt/(ts_double)vesicle->vlist->n/3.0; return TS_SUCCESS; }