#include #include #include #include #include #include #include #include #include #include "vesicle.h" #include "vertex.h" #include "triangle.h" #include "bond.h" #include "energy.h" #include "initial_distribution.h" ts_bool parseDump(char *dumpfname) { xmlDocPtr doc; xmlNodePtr cur, cur1,cur2; ts_vesicle *vesicle=NULL; doc = xmlParseFile(dumpfname); if (doc == NULL ) { fatal("Dump file could not be found or parsed. It is correct file?",1); } cur = xmlDocGetRootElement(doc); if (cur == NULL) { fatal("Dump file is empty.",1); } if (xmlStrcmp(cur->name, (const xmlChar *) "VTKFile")) { fatal("document of the wrong type, root node != story",1); } cur = cur->xmlChildrenNode; while (cur != NULL) { if ((!xmlStrcmp(cur->name, (const xmlChar *)"trisurf"))){ vesicle=parseTrisurfTag(doc, cur); } // START Point Position data & Bonds if ((!xmlStrcmp(cur->name, (const xmlChar *)"UnstructuredGrid"))){ cur1 = cur->xmlChildrenNode; while(cur1!=NULL){ if ((!xmlStrcmp(cur1->name, (const xmlChar *)"Piece"))){ cur2=cur1->xmlChildrenNode; while(cur2!=NULL){ if ((!xmlStrcmp(cur2->name, (const xmlChar *)"Points"))){ fprintf(stderr,"Found point data\n"); if(vesicle!=NULL) parseXMLVertexPosition(vesicle, doc, cur); } if ((!xmlStrcmp(cur2->name, (const xmlChar *)"Cells"))){ fprintf(stderr,"Found cell(Bonds) data\n"); if(vesicle!=NULL) parseXMLBonds(vesicle, doc, cur); } cur2=cur2->next; } } cur1 = cur1->next; } } // END Point Position data & Bonds cur = cur->next; } xmlFreeDoc(doc); init_normal_vectors(vesicle->tlist); mean_curvature_and_energy(vesicle); /* TODO: cells, polymeres, filaments, core, tape */ fprintf(stderr,"Restoration completed\n"); vesicle_free(vesicle); exit(0); return TS_SUCCESS; } /* this is a parser of additional data in xml */ ts_vesicle *parseTrisurfTag(xmlDocPtr doc, xmlNodePtr cur){ fprintf(stderr,"Parsing trisurf tag\n"); xmlNodePtr child; #ifdef COMPRESS /* base64decode */ size_t cLen; /*size_t tLen; const unsigned char test[]="Test"; char *cTest=base64_encode(test, 4,&tLen); unsigned char *cuTest=base64_decode((char *)cTest,tLen,&tLen); cuTest[tLen]=0; fprintf(stderr,"%s\n",cuTest); */ xmlChar *b64=xmlNodeListGetString(doc, cur->xmlChildrenNode, 1); unsigned char *compressed=base64_decode((char *)b64,strlen((char *)b64)-1,&cLen); /* uncompress */ unsigned char *subtree=(unsigned char *)malloc(512000*sizeof(unsigned char)); /* TODO: again, the uncompressed string must not exceed this */ z_stream infstream; infstream.zalloc = Z_NULL; infstream.zfree = Z_NULL; infstream.opaque = Z_NULL; infstream.avail_in = (ts_uint)cLen; // size of input infstream.next_in = compressed; // input char array infstream.avail_out = (ts_uint)512000; // size of output infstream.next_out = subtree; // output char array // the actual DE-compression work. inflateInit(&infstream); inflate(&infstream, Z_NO_FLUSH); inflateEnd(&infstream); fprintf(stderr,"%lu\n",cLen); subtree[infstream.total_out]='\0'; //zero terminate string fprintf(stderr,"%s\n",subtree); free(subtree); #endif /*parse xml subtree */ xmlChar *nvtx, *npoly, *nfono; nvtx = xmlGetProp(cur, (xmlChar *)"nvtx"); npoly=xmlGetProp(cur, (xmlChar *)"npoly"); nfono=xmlGetProp(cur, (xmlChar *)"nfono"); fprintf(stderr,"nvtx=%u\n",atoi((char *)nvtx)); ts_vesicle *vesicle=init_vesicle(atoi((char *)nvtx),10,10,10,0.1); //vesicle->poly_list=init_poly_list(atoi((char *)npoly),atoi((char *)nmono), vesicle->vlist, vesicle); xmlFree(nvtx); xmlFree(npoly); xmlFree(nfono); child = cur->xmlChildrenNode; while (child != NULL) { if ((!xmlStrcmp(child->name, (const xmlChar *)"vtxn"))){ parseTrisurfVtxn(vesicle->vlist, doc, child); } if ((!xmlStrcmp(child->name, (const xmlChar *)"tria"))){ parseTrisurfTria(vesicle, doc, child); } if ((!xmlStrcmp(child->name, (const xmlChar *)"trianeigh"))){ parseTrisurfTriaNeigh(vesicle, doc, child); } if ((!xmlStrcmp(child->name, (const xmlChar *)"tristar"))){ parseTrisurfTristar(vesicle, doc, child); } child = child->next; } return vesicle; } /* Low level tags parsers */ ts_bool parseTrisurfVtxn(ts_vertex_list *vlist, xmlDocPtr doc, xmlNodePtr cur){ xmlChar *chari; xmlChar *neighs; char *n; char *token; ts_uint neighi; ts_uint i; chari = xmlGetProp(cur, (xmlChar *)"idx"); i=atoi((char *)chari); xmlFree(chari); ts_vertex *vtx=vlist->vtx[i]; neighs = xmlNodeListGetString(doc, cur->xmlChildrenNode, 1); //fprintf(stderr,"Found neigh for vtx %u that seems to have index %u with neighs=%s\n",i,vtx->idx,neighs); n=(char *)neighs; token=strtok(n," "); while(token!=NULL){ neighi=atoi(token); //fprintf(stderr,"%u", neighi); vtx_add_neighbour(vtx,vlist->vtx[neighi]); token=strtok(NULL," "); } xmlFree(neighs); return TS_SUCCESS; } ts_bool parseTrisurfTria(ts_vesicle *vesicle, xmlDocPtr doc, xmlNodePtr cur){ xmlChar *triangles; char *tria; char *vtx[3]; ts_uint i,j; triangles = xmlNodeListGetString(doc, cur->xmlChildrenNode, 1); tria=(char *)triangles; vtx[0]=strtok(tria," "); for(i=1;i<3;i++) vtx[i]=strtok(NULL," "); j=0; while(vtx[2]!=NULL){ triangle_add(vesicle->tlist, vesicle->vlist->vtx[atoi(vtx[0])],vesicle->vlist->vtx[atoi(vtx[1])],vesicle->vlist->vtx[atoi(vtx[2])]); for(i=0;i<3;i++) vtx[i]=strtok(NULL," "); j++; } fprintf(stderr,"Parsing triangles %s j=%d\n",triangles,j); xmlFree(triangles); return TS_SUCCESS; } ts_bool parseTrisurfTriaNeigh(ts_vesicle *vesicle, xmlDocPtr doc, xmlNodePtr cur){ xmlChar *triangles; char *tria; char *ntria[3]; ts_uint i,j; triangles = xmlNodeListGetString(doc, cur->xmlChildrenNode, 1); tria=(char *)triangles; ntria[0]=strtok(tria," "); for(i=1;i<3;i++) ntria[i]=strtok(NULL," "); j=0; while(ntria[2]!=NULL){ triangle_add_neighbour(vesicle->tlist->tria[j],vesicle->tlist->tria[atoi(ntria[0])]); triangle_add_neighbour(vesicle->tlist->tria[j],vesicle->tlist->tria[atoi(ntria[1])]); triangle_add_neighbour(vesicle->tlist->tria[j],vesicle->tlist->tria[atoi(ntria[2])]); j++; for(i=0;i<3;i++) ntria[i]=strtok(NULL," "); } fprintf(stderr,"Parsing triangle neighbors j=%d\n",j); xmlFree(triangles); return TS_SUCCESS; } ts_bool parseTrisurfTristar(ts_vesicle *vesicle, xmlDocPtr doc, xmlNodePtr cur){ xmlChar *chari; xmlChar *tristar; char *t; char *token; ts_uint neighi; ts_uint i; chari = xmlGetProp(cur, (xmlChar *)"idx"); i=atoi((char *)chari); xmlFree(chari); ts_vertex *vtx=vesicle->vlist->vtx[i]; tristar = xmlNodeListGetString(doc, cur->xmlChildrenNode, 1); // fprintf(stderr,"Found tristar for vtx %u that seems to have index %u with tristar=%s\n",i,vtx->idx,tristar); t=(char *)tristar; token=strtok(t," "); while(token!=NULL){ neighi=atoi(token); //fprintf(stderr,"%u", neighi); vertex_add_tristar(vtx,vesicle->tlist->tria[neighi]); token=strtok(NULL," "); } xmlFree(tristar); return TS_SUCCESS; } /* this is a parser of vertex positions and bonds from main xml data */ ts_bool parseXMLVertexPosition(ts_vesicle *vesicle,xmlDocPtr doc, xmlNodePtr cur){ xmlNodePtr child = cur->xmlChildrenNode; xmlChar *points; char *pts; int i, idx; char *token[3]; while (child != NULL) { if ((!xmlStrcmp(child->name, (const xmlChar *)"DataArray"))){ points = xmlNodeListGetString(doc, child->xmlChildrenNode, 1); pts=(char *)points; token[0]=strtok(pts," "); for(i=1;i<3;i++) token[i]=strtok(NULL," "); idx=0; while(token[0]!=NULL){ vesicle->vlist->vtx[idx]->x=atof(token[0]); vesicle->vlist->vtx[idx]->y=atof(token[1]); vesicle->vlist->vtx[idx]->z=atof(token[2]); for(i=0;i<3;i++) token[i]=strtok(NULL," "); idx++; } xmlFree(points); } child=child->next; } return TS_SUCCESS; } ts_bool parseXMLBonds(ts_vesicle *vesicle,xmlDocPtr doc, xmlNodePtr cur){ xmlNodePtr child = cur->xmlChildrenNode; xmlChar *bonds; char *b; int i, idx; char *token[2]; while (child != NULL) { if ((!xmlStrcmp(child->name, (const xmlChar *)"DataArray"))){ bonds = xmlNodeListGetString(doc, child->xmlChildrenNode, 1); b=(char *)bonds; token[0]=strtok(b," "); token[1]=strtok(NULL," "); idx=0; while(token[0]!=NULL){ bond_add(vesicle->blist, vesicle->vlist->vtx[atoi(token[0])], vesicle->vlist->vtx[atoi(token[1])]); for(i=0;i<2;i++) token[i]=strtok(NULL," "); idx++; } xmlFree(bonds); } child=child->next; } return TS_SUCCESS; }