#include #include "general.h" #include "energy.h" #include "vertex.h" #include #include ts_bool mean_curvature_and_energy(ts_vesicle *vesicle){ ts_uint i; ts_vertex_list *vlist=vesicle->vlist; ts_vertex **vtx=vlist->vtx; for(i=0;in;i++){ energy_vertex(vtx[i]); } return TS_SUCCESS; } inline ts_bool energy_vertex(ts_vertex *vtx){ // ts_vertex *vtx=&vlist->vertex[n]-1; // Caution! 0 Indexed value! // ts_triangle *tristar=vtx->tristar-1; ts_vertex_data *data=vtx->data; ts_uint jj; ts_uint jjp,jjm; ts_vertex *j,*jp, *jm; ts_triangle *jt; ts_double s=0,xh=0,yh=0,zh=0,txn=0,tyn=0,tzn=0; ts_double x1,x2,x3,ctp,ctm,tot,xlen; ts_double h,ht; for(jj=1; jj<=data->neigh_no;jj++){ jjp=jj+1; if(jjp>data->neigh_no) jjp=1; jjm=jj-1; if(jjm<1) jjm=data->neigh_no; j=data->neigh[jj-1]; jp=data->neigh[jjp-1]; jm=data->neigh[jjm-1]; // printf("tristar_no=%u, neigh_no=%u, jj=%u\n",data->tristar_no,data->neigh_no,jj); jt=data->tristar[jj-1]; x1=vtx_distance_sq(vtx,jp); //shouldn't be zero! x2=vtx_distance_sq(j,jp); // shouldn't be zero! x3=(j->data->x-jp->data->x)*(data->x-jp->data->x)+ (j->data->y-jp->data->y)*(data->y-jp->data->y)+ (j->data->z-jp->data->z)*(data->z-jp->data->z); #ifdef TS_DOUBLE_DOUBLE ctp=x3/sqrt(x1*x2-x3*x3); #endif #ifdef TS_DOUBLE_FLOAT ctp=x3/sqrtf(x1*x2-x3*x3); #endif #ifdef TS_DOUBLE_LONGDOUBLE ctp=x3/sqrtl(x1*x2-x3*x3); #endif x1=vtx_distance_sq(vtx,jm); x2=vtx_distance_sq(j,jm); x3=(j->data->x-jm->data->x)*(data->x-jm->data->x)+ (j->data->y-jm->data->y)*(data->y-jm->data->y)+ (j->data->z-jm->data->z)*(data->z-jm->data->z); #ifdef TS_DOUBLE_DOUBLE ctm=x3/sqrt(x1*x2-x3*x3); #endif #ifdef TS_DOUBLE_FLOAT ctm=x3/sqrtf(x1*x2-x3*x3); #endif #ifdef TS_DOUBLE_LONGDOUBLE ctm=x3/sqrtl(x1*x2-x3*x3); #endif tot=ctp+ctm; tot=0.5*tot; xlen=vtx_distance_sq(j,vtx); #ifdef TS_DOUBLE_DOUBLE data->bond[jj-1]->bond_length=sqrt(xlen); #endif #ifdef TS_DOUBLE_FLOAT data->bond[jj-1]->bond_length=sqrtf(xlen); #endif #ifdef TS_DOUBLE_LONGDOUBLE data->bond[jj-1]->bond_length=sqrtl(xlen); #endif data->bond[jj-1]->bond_length_dual=tot*data->bond[jj-1]->bond_length; s+=tot*xlen; xh+=tot*(j->data->x - data->x); yh+=tot*(j->data->y - data->y); zh+=tot*(j->data->z - data->z); txn+=jt->xnorm; tyn+=jt->ynorm; tzn+=jt->znorm; } h=xh*xh+yh*yh+zh*zh; ht=txn*xh+tyn*yh + tzn*zh; s=s/4.0; #ifdef TS_DOUBLE_DOUBLE if(ht>=0.0) { data->curvature=sqrt(h); } else { data->curvature=-sqrt(h); } #endif #ifdef TS_DOUBLE_FLOAT if(ht>=0.0) { data->curvature=sqrtf(h); } else { data->curvature=-sqrtf(h); } #endif #ifdef TS_DOUBLE_LONGDOUBLE if(ht>=0.0) { data->curvature=sqrtl(h); } else { data->curvature=-sqrtl(h); } #endif // What is vtx->data->c?????????????? Here it is 0! // c is forced curvature energy for each vertex. Should be set to zero for // norman circumstances. data->energy=0.5*s*(data->curvature/s-data->c)*(data->curvature/s-data->c); return TS_SUCCESS; }