#include #include "general.h" #include "vertex.h" #include ts_bool init_cell_list(ts_cell_list *clist, ts_double stepsize){ ts_uint i; ts_uint nocells=clist->ncmax[0]*clist->ncmax[1]*clist->ncmax[2]; clist->cell=malloc(nocells*sizeof(ts_cell)); clist->dcell=1.0/(1.0 + stepsize); clist->shift=(ts_double) clist->ncmax[0]/2; clist->cellno=nocells; for(i=0;icell[i].idx=i+1; // We enumerate cells! Probably never required! clist->cell[i].nvertex=0; clist->cell[i].vertex=NULL; } return TS_SUCCESS; } ts_bool cell_list_free(ts_cell_list *clist){ ts_uint i; ts_uint nocells=clist->ncmax[0]*clist->ncmax[1]*clist->ncmax[2]; for(i=0;icell->vertex != NULL) free(clist->cell->vertex); free(clist->cell); return TS_SUCCESS; } inline ts_uint vertex_self_avoidance(ts_vesicle *vesicle, ts_vertex *vtx){ ts_uint i,cellidx; ts_uint ncx, ncy,ncz; ncx=(ts_uint)((vtx->x-vesicle->cm[0])*vesicle->clist.dcell+vesicle->clist.shift); ncy=(ts_uint)((vtx->y-vesicle->cm[1])*vesicle->clist.dcell+vesicle->clist.shift); ncz=(ts_uint)((vtx->z-vesicle->cm[2])*vesicle->clist.dcell+vesicle->clist.shift); // fprintf(stderr,"(ncx,ncy,ncz)=(%i %i %i)\t",ncx,ncy,ncz); // fprintf(stderr,"(ncxmax,ncymax,nczmax)=(%i %i %i)\n",vesicle->clist.ncmax[0], vesicle->clist.ncmax[1], vesicle->clist.ncmax[2]); if(ncx == vesicle->clist.ncmax[0]-1 || ncx == 2){ fatal("Vesicle is positioned outside the cell covered area. Coordinate x is the problem.",1500); } if(ncy == vesicle->clist.ncmax[1]-1 || ncy == 2){ fatal("Vesicle is positioned outside the cell covered area. Coordinate y is the problem.",1500); } if(ncz == vesicle->clist.ncmax[2]-1 || ncz == 2){ fatal("Vesicle is positioned outside the cell covered area. Coordinate z is the problem.",1500); } cellidx=ncz+(ncy-1)*vesicle->clist.ncmax[2] + (ncx-1)*vesicle->clist.ncmax[2]* vesicle->clist.ncmax[1] - 1; // -1 is because of 0 based indexing return cellidx; } ts_bool cell_add_vertex(ts_cell *cell, ts_vertex *vtx){ cell->nvertex++; cell->vertex=realloc(cell->vertex,cell->nvertex*sizeof(ts_vertex *)); if(vtx->neigh == NULL){ fatal("Reallocation of memory failed during insertion of vertex neighbour in vertex_add_neighbour",3); } cell->vertex[cell->nvertex-1]=vtx; return TS_SUCCESS; } ts_bool cell_list_cell_ocupation_clear(ts_cell_list *clist){ ts_uint i; for(i=0;icellno;i++){ if(clist->cell[i].vertex != NULL){ free(clist->cell[i].vertex); clist->cell[i].vertex=NULL; } clist->cell[i].nvertex=0; } return TS_SUCCESS; } ts_bool cell_occupation_number_and_internal_proximity(ts_cell_list *clist, ts_uint cellidx, ts_vertex *vtx, ts_vertex *tvtx){ ts_uint ncx,ncy,ncz,remainder,cell_occupation; ts_uint i,j,k,l,neigh_cidx,mcell; ts_double dist; ncx=(cellidx+1)/(clist->ncmax[2]*clist->ncmax[1])+1; remainder=(cellidx+1)%(clist->ncmax[2]*clist->ncmax[1]); ncy=remainder/clist->ncmax[2]+1; ncz=remainder%clist->ncmax[2]; // fprintf(stderr,"here are ncx,ncy,ncz=%i,%i,%i\n",ncx,ncy,ncz); for(i=ncx-1;i<=ncx+1;i++){ for(j=ncy-1;j<=ncy+1;j++){ for(k=ncz-1;k<=ncz+1;k++){ neigh_cidx=k+(j-1)*clist->ncmax[2]+(i-1)*clist->ncmax[2]*clist->ncmax[1] -1; // fprintf(stderr,"neigh_cell_index=%i\n",neigh_cidx); cell_occupation=clist->cell[neigh_cidx].nvertex; // fprintf(stderr, "cell_occupation=%i\n",cell_occupation); if(cell_occupation>clist->max_occupancy){ fatal("Neighbouring cell occupation more than set max_occupancy value.",2000); } // Now we check whether we didn't come close to some other vertices in the same // cell! if(cell_occupation>1){ for(l=0;lcell[neigh_cidx].vertex[l]!=vtx){ // fprintf(stderr,"calling dist on vertex %i\n",l); dist=vertex_distance_sq(clist->cell[neigh_cidx].vertex[l],tvtx); // fprintf(stderr,"dist was %f\n",dist); if(dist<1) return TS_FAIL; } } } } } } return TS_SUCCESS; }