#include #include #include //#include "io.h" #include "general.h" #include "timestep.h" #include "vertexmove.h" #include "bondflip.h" #include "frame.h" #include "io.h" #include "stats.h" #include "sh.h" #include "shcomplex.h" #include "shreal.h" #include "vesicle.h" #include #include #include ts_bool run_simulation(ts_vesicle *vesicle, ts_uint mcsweeps, ts_uint inititer, ts_uint iterations, ts_uint start_iteration){ ts_uint i, j,k,l,m; ts_double r0,kc1,kc2,kc3,kc4; ts_double l1,l2,l3,vmsr,bfsr, vmsrt, bfsrt; ts_ulong epochtime; ts_double diff; FILE *fd1,*fd2=NULL; char filename[10000]; strcpy(filename,command_line_args.path); strcat(filename,"statistics.csv"); FILE *fd=fopen(filename,"w"); if(fd==NULL){ fatal("Cannot open statistics.csv file for writing",1); } fprintf(fd, "Epoch OuterLoop VertexMoveSucessRate BondFlipSuccessRate Volume Area lamdba1 lambda2 lambda3 Kc(2-9) Kc(6-9) Kc(2-end) Kc(3-6)\n"); if(vesicle->sphHarmonics!=NULL){ strcpy(filename,command_line_args.path); strcat(filename,"ulm2.csv"); fd2=fopen(filename,"w"); if(fd2==NULL){ fatal("Cannot open ulm2.csv file for writing",1); } fprintf(fd2, "Timestep u_00^2 u_10^2 u_11^2 u_20^2 ...\n"); } /* RANDOM SEED SET BY CURRENT TIME */ epochtime=get_epoch(); srand48(epochtime); centermass(vesicle); cell_occupation(vesicle); vesicle_volume(vesicle); //needed for constant volume at this moment vesicle_area(vesicle); //needed for constant area at this moment V0=vesicle->volume; A0=vesicle->area; epsvol=4.0*sqrt(2.0*M_PI)/pow(3.0,3.0/4.0)*V0/pow(vesicle->tlist->n,3.0/2.0); epsarea=A0/(ts_double)vesicle->tlist->n; // fprintf(stderr, "DVol=%1.16f (%1.16f), V0=%1.16f\n", epsvol,0.003e-2*V0,V0); if(start_iterationvolume); */ for(j=0;jvolume); */ vmsr/=(ts_double)mcsweeps; bfsr/=(ts_double)mcsweeps; centermass(vesicle); cell_occupation(vesicle); ts_fprintf(stdout,"Done %d out of %d iterations (x %d MC sweeps).\n",i+1,inititer+iterations,mcsweeps); dump_state(vesicle,i); if(i>=inititer){ write_vertex_xml_file(vesicle,i-inititer); write_master_xml_file(command_line_args.output_fullfilename); epochtime=get_epoch(); gyration_eigen(vesicle, &l1, &l2, &l3); vesicle_volume(vesicle); //calculates just volume. vesicle_area(vesicle); //calculates area. r0=getR0(vesicle); if(vesicle->sphHarmonics!=NULL){ preparationSh(vesicle,r0); //calculateYlmi(vesicle); calculateUlmComplex(vesicle); storeUlmComplex2(vesicle); saveAvgUlm2Complex(vesicle); calculateUlmReal(vesicle); storeUlm2Real(vesicle); saveAvgUlm2Real(vesicle); kc1=calculateKc(vesicle, 2,9); kc2=calculateKc(vesicle, 6,9); kc3=calculateKc(vesicle, 2,vesicle->sphHarmonics->l); kc4=calculateKc(vesicle, 3,6); strcpy(filename,command_line_args.path); strcat(filename,"state.dat"); fd1=fopen(filename,"w"); fprintf(fd1,"%e %e\n",vesicle->volume, getR0(vesicle)); for(k=0;kvlist->n;k++){ fprintf(fd1,"%e %e %e %e %e\n", vesicle->vlist->vtx[k]->x, vesicle->vlist->vtx[k]->y, vesicle->vlist->vtx[k]->z, vesicle->vlist->vtx[k]->solAngle, vesicle->vlist->vtx[k]->relR ); } fclose(fd1); fprintf(fd2,"%u ", i); for(l=0;lsphHarmonics->l;l++){ for(m=l;m<2*l+1;m++){ fprintf(fd2,"%e ", gsl_complex_abs2(vesicle->sphHarmonics->ulmComplex[l][m]) ); if(l<5) { if(m==l) diff= gsl_complex_abs2(vesicle->sphHarmonics->ulmComplex[l][m])-pow(vesicle->sphHarmonics->ulmReal[l][m],2); else diff= gsl_complex_abs2(vesicle->sphHarmonics->ulmComplex[l][m])-(pow(vesicle->sphHarmonics->ulmReal[l][m],2)+pow(vesicle->sphHarmonics->ulmReal[l][2*l-m],2))/2.0; fprintf(stderr,"%e ", diff/gsl_complex_abs2(vesicle->sphHarmonics->ulmComplex[l][m]) ); } } if(l<5) fprintf(stderr,"\n"); } fprintf(fd2,"\n"); fprintf(stderr,"---\n"); fflush(fd2); } fprintf(fd, "%lu %u %e %e %1.16e %1.16e %1.16e %1.16e %1.16e %1.16e %1.16e %1.16e %1.16e\n",epochtime,i,vmsr,bfsr,vesicle->volume, vesicle->area,l1,l2,l3,kc1, kc2, kc3,kc4); fflush(fd); // sprintf(filename,"timestep-%05d.pov",i-inititer); // write_pov_file(vesicle,filename); } } fclose(fd); if(fd2!=NULL) fclose(fd2); return TS_SUCCESS; } ts_bool single_timestep(ts_vesicle *vesicle,ts_double *vmsr, ts_double *bfsr){ // vesicle_volume(vesicle); // fprintf(stderr,"Volume before TS=%1.16e\n", vesicle->volume); ts_bool retval; ts_double rnvec[3]; ts_uint i,j, b; ts_uint vmsrcnt=0; for(i=0;ivlist->n;i++){ rnvec[0]=drand48(); rnvec[1]=drand48(); rnvec[2]=drand48(); retval=single_verticle_timestep(vesicle,vesicle->vlist->vtx[i],rnvec); if(retval==TS_SUCCESS) vmsrcnt++; } ts_int bfsrcnt=0; for(i=0;i<3*vesicle->vlist->n;i++){ b=rand() % vesicle->blist->n; //find a bond and return a pointer to a bond... //call single_bondflip_timestep... retval=single_bondflip_timestep(vesicle,vesicle->blist->bond[b],rnvec); // b++; retval=TS_FAIL; if(retval==TS_SUCCESS) bfsrcnt++; } for(i=0;ipoly_list->n;i++){ for(j=0;jpoly_list->poly[i]->vlist->n;j++){ rnvec[0]=drand48(); rnvec[1]=drand48(); rnvec[2]=drand48(); retval=single_poly_vertex_move(vesicle,vesicle->poly_list->poly[i],vesicle->poly_list->poly[i]->vlist->vtx[j],rnvec); } } for(i=0;ifilament_list->n;i++){ for(j=0;jfilament_list->poly[i]->vlist->n;j++){ rnvec[0]=drand48(); rnvec[1]=drand48(); rnvec[2]=drand48(); retval=single_filament_vertex_move(vesicle,vesicle->filament_list->poly[i],vesicle->filament_list->poly[i]->vlist->vtx[j],rnvec); } } // printf("Bondflip success rate in one sweep: %d/%d=%e\n", cnt,3*vesicle->blist->n,(double)cnt/(double)vesicle->blist->n/3.0); *vmsr=(ts_double)vmsrcnt/(ts_double)vesicle->vlist->n; *bfsr=(ts_double)bfsrcnt/(ts_double)vesicle->vlist->n/3.0; // vesicle_volume(vesicle); // fprintf(stderr,"Volume after TS=%1.16e\n", vesicle->volume); return TS_SUCCESS; }