/* vim: set ts=4 sts=4 sw=4 noet : */ #include #include #include "general.h" #include "vertex.h" #include "bond.h" #include "triangle.h" #include "vesicle.h" #include "energy.h" #include "timestep.h" #include "cell.h" #include "io.h" #include #include "vertexmove.h" #include #include "constvol.h" #include "plugins.h" ts_bool single_verticle_timestep(ts_vesicle *vesicle,ts_vertex *vtx,ts_double *rn){ ts_uint i; ts_bool retval; ts_uint cellidx; ts_double delta_energy, delta_energy_cv,oenergy,dvol=0.0, darea=0.0, dstretchenergy=0.0; ts_double costheta,sintheta,phi,r; //This will hold all the information of vtx and its neighbours ts_vertex backupvtx[20], *constvol_vtx_moved=NULL, *constvol_vtx_backup=NULL; memcpy((void *)&backupvtx[0],(void *)vtx,sizeof(ts_vertex)); //random move in a sphere with radius stepsize: r=vesicle->stepsize*rn[0]; phi=rn[1]*2*M_PI; costheta=2*rn[2]-1; sintheta=sqrt(1-pow(costheta,2)); vtx->x=vtx->x+r*sintheta*cos(phi); vtx->y=vtx->y+r*sintheta*sin(phi); vtx->z=vtx->z+r*costheta; // plane confinement check whether the new position of vertex will be out of bounds if(vesicle->tape->plane_confinement_switch){ if(vtx->z>vesicle->confinement_plane.z_max || vtx->zconfinement_plane.z_min){ vtx=memcpy((void *)vtx,(void *)&backupvtx[0],sizeof(ts_vertex)); return TS_FAIL; } } /* Entry point for plugin vm_hard_constraint() function */ ts_plugin_chain *ptr=vesicle->plist->chain->vm_hard_constraint; while(ptr!=NULL){ retval = ptr->plugin->function->vm_hard_constraint(vesicle,vtx, &backupvtx[0]); if(retval==TS_FAIL){ vtx=memcpy((void *)vtx,(void *)&backupvtx[0],sizeof(ts_vertex)); return TS_FAIL; } ptr=ptr->next; } //if all the tests are successful, then energy for vtx and neighbours is calculated for(i=0;ineigh_no;i++){ memcpy((void *)&backupvtx[i+1],(void *)vtx->neigh[i],sizeof(ts_vertex)); } if(vesicle->pswitch == 1 || vesicle->tape->constvolswitch>0){ for(i=0;itristar_no;i++) dvol-=vtx->tristar[i]->volume; } if(vesicle->tape->constareaswitch==2){ for(i=0;itristar_no;i++) darea-=vtx->tristar[i]->area; } //stretching energy 1 of 3 if(vesicle->tape->stretchswitch==1){ for(i=0;itristar_no;i++) dstretchenergy-=vtx->tristar[i]->energy; } delta_energy=0; // vesicle_volume(vesicle); // fprintf(stderr,"Volume in the beginning=%1.16e\n", vesicle->volume); //update the normals of triangles that share bead i. for(i=0;itristar_no;i++) triangle_normal_vector(vtx->tristar[i]); oenergy=vtx->energy; energy_vertex(vtx); delta_energy=vtx->xk*(vtx->energy - oenergy); //the same is done for neighbouring vertices for(i=0;ineigh_no;i++){ oenergy=vtx->neigh[i]->energy; energy_vertex(vtx->neigh[i]); delta_energy+=vtx->neigh[i]->xk*(vtx->neigh[i]->energy-oenergy); } if(vesicle->pswitch == 1 || vesicle->tape->constvolswitch >0){ for(i=0;itristar_no;i++) dvol+=vtx->tristar[i]->volume; if(vesicle->pswitch==1) delta_energy-=vesicle->pressure*dvol; }; if(vesicle->tape->constareaswitch==2){ /* check whether the darea is gt epsarea */ for(i=0;itristar_no;i++) darea+=vtx->tristar[i]->area; if(fabs(vesicle->area+darea-A0)>epsarea){ //restore old state. vtx=memcpy((void *)vtx,(void *)&backupvtx[0],sizeof(ts_vertex)); for(i=0;ineigh_no;i++){ vtx->neigh[i]=memcpy((void *)vtx->neigh[i],(void *)&backupvtx[i+1],sizeof(ts_vertex)); } for(i=0;itristar_no;i++) triangle_normal_vector(vtx->tristar[i]); //fprintf(stderr,"fajlam!\n"); return TS_FAIL; } } if(vesicle->tape->constvolswitch==2){ /*check whether the dvol is gt than epsvol */ //fprintf(stderr,"DVOL=%1.16e\n",dvol); if(fabs(vesicle->volume+dvol-V0)>epsvol){ //restore old state. vtx=memcpy((void *)vtx,(void *)&backupvtx[0],sizeof(ts_vertex)); for(i=0;ineigh_no;i++){ vtx->neigh[i]=memcpy((void *)vtx->neigh[i],(void *)&backupvtx[i+1],sizeof(ts_vertex)); } for(i=0;itristar_no;i++) triangle_normal_vector(vtx->tristar[i]); //fprintf(stderr,"fajlam!\n"); return TS_FAIL; } } else // vesicle_volume(vesicle); // fprintf(stderr,"Volume before=%1.16e\n", vesicle->volume); if(vesicle->tape->constvolswitch == 1){ retval=constvolume(vesicle, vtx, -dvol, &delta_energy_cv, &constvol_vtx_moved,&constvol_vtx_backup); if(retval==TS_FAIL){ // if we couldn't move the vertex to assure constant volume vtx=memcpy((void *)vtx,(void *)&backupvtx[0],sizeof(ts_vertex)); for(i=0;ineigh_no;i++){ vtx->neigh[i]=memcpy((void *)vtx->neigh[i],(void *)&backupvtx[i+1],sizeof(ts_vertex)); } for(i=0;itristar_no;i++) triangle_normal_vector(vtx->tristar[i]); // fprintf(stderr,"fajlam!\n"); return TS_FAIL; } // vesicle_volume(vesicle); // fprintf(stderr,"Volume after=%1.16e\n", vesicle->volume); // fprintf(stderr,"Volume after-dvol=%1.16e\n", vesicle->volume-dvol); // fprintf(stderr,"Denergy before=%e\n",delta_energy); delta_energy+=delta_energy_cv; // fprintf(stderr,"Denergy after=%e\n",delta_energy); } /* Vertices with spontaneous curvature may have spontaneous force perpendicular to the surface of the vesicle. additional delta energy is calculated in this function */ delta_energy+=direct_force_energy(vesicle,vtx,backupvtx); //stretching energy 2 of 3 if(vesicle->tape->stretchswitch==1){ for(i=0;itristar_no;i++){ stretchenergy(vesicle, vtx->tristar[i]); dstretchenergy+=vtx->tristar[i]->energy; } } delta_energy+=dstretchenergy; /* No poly-bond energy for now! if(vtx->grafted_poly!=NULL){ delta_energy+= (pow(sqrt(vtx_distance_sq(vtx, vtx->grafted_poly->vlist->vtx[0])-1),2)- pow(sqrt(vtx_distance_sq(&backupvtx[0], vtx->grafted_poly->vlist->vtx[0])-1),2)) *vtx->grafted_poly->k; } */ // plane confinement energy due to compressing force if(vesicle->tape->plane_confinement_switch){ if(vesicle->confinement_plane.force_switch){ //substract old energy if(abs(vesicle->tape->plane_d/2.0-vesicle->confinement_plane.z_max)>1e-10) { delta_energy-=vesicle->tape->plane_F / pow(vesicle->confinement_plane.z_max-backupvtx[0].z,2); delta_energy+=vesicle->tape->plane_F / pow(vesicle->confinement_plane.z_max-vtx->z,2); } if(abs(-vesicle->tape->plane_d/2.0-vesicle->confinement_plane.z_min)>1e-10) { delta_energy-=vesicle->tape->plane_F / pow(vesicle->confinement_plane.z_min-backupvtx[0].z,2); delta_energy+=vesicle->tape->plane_F / pow(vesicle->confinement_plane.z_min-vtx->z,2); } } } // fprintf(stderr, "DE=%f\n",delta_energy); //MONTE CARLOOOOOOOO // if(vtx->c!=0.0) printf("DE=%f\n",delta_energy); if(delta_energy>=0){ #ifdef TS_DOUBLE_DOUBLE if(exp(-delta_energy)< drand48()) #endif #ifdef TS_DOUBLE_FLOAT if(expf(-delta_energy)< (ts_float)drand48()) #endif #ifdef TS_DOUBLE_LONGDOUBLE if(expl(-delta_energy)< (ts_ldouble)drand48()) #endif { //not accepted, reverting changes // fprintf(stderr,"MC failed\n"); vtx=memcpy((void *)vtx,(void *)&backupvtx[0],sizeof(ts_vertex)); for(i=0;ineigh_no;i++){ vtx->neigh[i]=memcpy((void *)vtx->neigh[i],(void *)&backupvtx[i+1],sizeof(ts_vertex)); } //update the normals of triangles that share bead i. for(i=0;itristar_no;i++) triangle_normal_vector(vtx->tristar[i]); //stretching energy 3 of 3 if(vesicle->tape->stretchswitch==1){ for(i=0;itristar_no;i++){ stretchenergy(vesicle,vtx->tristar[i]); } } // fprintf(stderr, "before vtx(x,y,z)=%e,%e,%e\n",constvol_vtx_moved->x, constvol_vtx_moved->y, constvol_vtx_moved->z); if(vesicle->tape->constvolswitch == 1){ constvolumerestore(constvol_vtx_moved,constvol_vtx_backup); } // fprintf(stderr, "after vtx(x,y,z)=%e,%e,%e\n",constvol_vtx_moved->x, constvol_vtx_moved->y, constvol_vtx_moved->z); // vesicle_volume(vesicle); // fprintf(stderr,"Volume after fail=%1.16e\n", vesicle->volume); return TS_FAIL; } } //accepted // fprintf(stderr,"MC accepted\n"); // oldcellidx=vertex_self_avoidance(vesicle, &backupvtx[0]); cellidx=vertex_self_avoidance(vesicle, vtx); if(vtx->cell!=vesicle->clist->cell[cellidx]){ retval=cell_add_vertex(vesicle->clist->cell[cellidx],vtx); // if(retval==TS_SUCCESS) cell_remove_vertex(vesicle->clist->cell[oldcellidx],vtx); if(retval==TS_SUCCESS) cell_remove_vertex(backupvtx[0].cell,vtx); } if(vesicle->tape->constvolswitch == 2){ vesicle->volume+=dvol; } else if(vesicle->tape->constvolswitch == 1){ constvolumeaccept(vesicle,constvol_vtx_moved,constvol_vtx_backup); } if(vesicle->tape->constareaswitch==2){ vesicle->area+=darea; } // if(oldcellidx); //END MONTE CARLOOOOOOO // vesicle_volume(vesicle); // fprintf(stderr,"Volume after success=%1.16e\n", vesicle->volume); return TS_SUCCESS; } ts_bool single_poly_vertex_move(ts_vesicle *vesicle,ts_poly *poly,ts_vertex *vtx,ts_double *rn){ ts_uint i; ts_bool retval; ts_uint cellidx; // ts_double delta_energy; ts_double costheta,sintheta,phi,r; ts_double dist; //This will hold all the information of vtx and its neighbours ts_vertex backupvtx; // ts_bond backupbond[2]; memcpy((void *)&backupvtx,(void *)vtx,sizeof(ts_vertex)); //random move in a sphere with radius stepsize: r=vesicle->stepsize*rn[0]; phi=rn[1]*2*M_PI; costheta=2*rn[2]-1; sintheta=sqrt(1-pow(costheta,2)); vtx->x=vtx->x+r*sintheta*cos(phi); vtx->y=vtx->y+r*sintheta*sin(phi); vtx->z=vtx->z+r*costheta; //distance with neighbours check for(i=0;ineigh_no;i++){ dist=vtx_distance_sq(vtx,vtx->neigh[i]); if(dist<1.0 || dist>vesicle->dmax) { vtx=memcpy((void *)vtx,(void *)&backupvtx,sizeof(ts_vertex)); return TS_FAIL; } } // Distance with grafted vesicle-vertex check: if(vtx==poly->vlist->vtx[0]){ dist=vtx_distance_sq(vtx,poly->grafted_vtx); if(dist<1.0 || dist>vesicle->dmax) { vtx=memcpy((void *)vtx,(void *)&backupvtx,sizeof(ts_vertex)); return TS_FAIL; } } //self avoidance check with distant vertices cellidx=vertex_self_avoidance(vesicle, vtx); //check occupation number retval=cell_occupation_number_and_internal_proximity(vesicle->clist,cellidx,vtx); if(retval==TS_FAIL){ vtx=memcpy((void *)vtx,(void *)&backupvtx,sizeof(ts_vertex)); return TS_FAIL; } //if all the tests are successful, then energy for vtx and neighbours is calculated /* Energy ignored for now! delta_energy=0; for(i=0;ibond_no;i++){ memcpy((void *)&backupbond[i],(void *)vtx->bond[i],sizeof(ts_bond)); vtx->bond[i]->bond_length=sqrt(vtx_distance_sq(vtx->bond[i]->vtx1,vtx->bond[i]->vtx2)); bond_energy(vtx->bond[i],poly); delta_energy+= vtx->bond[i]->energy - backupbond[i].energy; } if(vtx==poly->vlist->vtx[0]){ delta_energy+= (pow(sqrt(vtx_distance_sq(vtx, poly->grafted_vtx)-1),2)- pow(sqrt(vtx_distance_sq(&backupvtx, poly->grafted_vtx)-1),2)) *poly->k; } if(delta_energy>=0){ #ifdef TS_DOUBLE_DOUBLE if(exp(-delta_energy)< drand48() ) #endif #ifdef TS_DOUBLE_FLOAT if(expf(-delta_energy)< (ts_float)drand48()) #endif #ifdef TS_DOUBLE_LONGDOUBLE if(expl(-delta_energy)< (ts_ldouble)drand48()) #endif { //not accepted, reverting changes vtx=memcpy((void *)vtx,(void *)&backupvtx,sizeof(ts_vertex)); for(i=0;ibond_no;i++){ vtx->bond[i]=memcpy((void *)vtx->bond[i],(void *)&backupbond[i],sizeof(ts_bond)); } return TS_FAIL; } } */ // oldcellidx=vertex_self_avoidance(vesicle, &backupvtx[0]); if(vtx->cell!=vesicle->clist->cell[cellidx]){ retval=cell_add_vertex(vesicle->clist->cell[cellidx],vtx); // if(retval==TS_SUCCESS) cell_remove_vertex(vesicle->clist->cell[oldcellidx],vtx); if(retval==TS_SUCCESS) cell_remove_vertex(backupvtx.cell,vtx); } // if(oldcellidx); //END MONTE CARLOOOOOOO return TS_SUCCESS; } ts_bool single_filament_vertex_move(ts_vesicle *vesicle,ts_poly *poly,ts_vertex *vtx,ts_double *rn){ ts_uint i; ts_bool retval; ts_uint cellidx; ts_double delta_energy; ts_double costheta,sintheta,phi,r; ts_double dist[2]; //This will hold all the information of vtx and its neighbours ts_vertex backupvtx,backupneigh[2]; ts_bond backupbond[2]; //backup vertex: memcpy((void *)&backupvtx,(void *)vtx,sizeof(ts_vertex)); //random move in a sphere with radius stepsize: r=vesicle->stepsize*rn[0]; phi=rn[1]*2*M_PI; costheta=2*rn[2]-1; sintheta=sqrt(1-pow(costheta,2)); vtx->x=vtx->x+r*sintheta*cos(phi); vtx->y=vtx->y+r*sintheta*sin(phi); vtx->z=vtx->z+r*costheta; //distance with neighbours check for(i=0;ibond_no;i++){ dist[i]=vtx_distance_sq(vtx->bond[i]->vtx1,vtx->bond[i]->vtx2); if(dist[i]<1.0 || dist[i]>vesicle->dmax) { vtx=memcpy((void *)vtx,(void *)&backupvtx,sizeof(ts_vertex)); return TS_FAIL; } } // TODO: Maybe faster if checks only nucleus-neighboring cells // Nucleus penetration check: if (vtx->x*vtx->x + vtx->y*vtx->y + vtx->z*vtx->z < vesicle->R_nucleus){ vtx=memcpy((void *)vtx,(void *)&backupvtx,sizeof(ts_vertex)); return TS_FAIL; } //self avoidance check with distant vertices cellidx=vertex_self_avoidance(vesicle, vtx); //check occupation number retval=cell_occupation_number_and_internal_proximity(vesicle->clist,cellidx,vtx); if(retval==TS_FAIL){ vtx=memcpy((void *)vtx,(void *)&backupvtx,sizeof(ts_vertex)); return TS_FAIL; } //backup bonds for(i=0;ibond_no;i++){ memcpy(&backupbond[i],vtx->bond[i], sizeof(ts_bond)); vtx->bond[i]->bond_length=sqrt(dist[i]); bond_vector(vtx->bond[i]); } //backup neighboring vertices: for(i=0;ineigh_no;i++){ memcpy(&backupneigh[i],vtx->neigh[i], sizeof(ts_vertex)); } //if all the tests are successful, then energy for vtx and neighbours is calculated delta_energy=0; if(vtx->bond_no == 2){ vtx->energy = -(vtx->bond[0]->x*vtx->bond[1]->x + vtx->bond[0]->y*vtx->bond[1]->y + vtx->bond[0]->z*vtx->bond[1]->z)/vtx->bond[0]->bond_length/vtx->bond[1]->bond_length; delta_energy += vtx->energy - backupvtx.energy; } for(i=0;ineigh_no;i++){ if(vtx->neigh[i]->bond_no == 2){ vtx->neigh[i]->energy = -(vtx->neigh[i]->bond[0]->x*vtx->neigh[i]->bond[1]->x + vtx->neigh[i]->bond[0]->y*vtx->neigh[i]->bond[1]->y + vtx->neigh[i]->bond[0]->z*vtx->neigh[i]->bond[1]->z)/vtx->neigh[i]->bond[0]->bond_length/vtx->neigh[i]->bond[1]->bond_length; delta_energy += vtx->neigh[i]->energy - backupneigh[i].energy; } } // poly->k is filament persistence length (in units l_min) delta_energy *= poly->k; if(delta_energy>=0){ #ifdef TS_DOUBLE_DOUBLE if(exp(-delta_energy)< drand48() ) #endif #ifdef TS_DOUBLE_FLOAT if(expf(-delta_energy)< (ts_float)drand48()) #endif #ifdef TS_DOUBLE_LONGDOUBLE if(expl(-delta_energy)< (ts_ldouble)drand48()) #endif { //not accepted, reverting changes vtx=memcpy((void *)vtx,(void *)&backupvtx,sizeof(ts_vertex)); for(i=0;ineigh_no;i++){ memcpy(vtx->neigh[i],&backupneigh[i],sizeof(ts_vertex)); } for(i=0;ibond_no;i++){ vtx->bond[i]=memcpy((void *)vtx->bond[i],(void *)&backupbond[i],sizeof(ts_bond)); } return TS_FAIL; } } // oldcellidx=vertex_self_avoidance(vesicle, &backupvtx[0]); if(vtx->cell!=vesicle->clist->cell[cellidx]){ retval=cell_add_vertex(vesicle->clist->cell[cellidx],vtx); // if(retval==TS_SUCCESS) cell_remove_vertex(vesicle->clist->cell[oldcellidx],vtx); if(retval==TS_SUCCESS) cell_remove_vertex(backupvtx.cell,vtx); } // if(oldcellidx); //END MONTE CARLOOOOOOO return TS_SUCCESS; }