#include #include #include #include /** @brief Calculates cross-section of vesicle with plane. * * Function returns points of cross-section of vesicle with plane. Plane is described with equation $ax+by+cz+d=0$. Algorithm extracts coordinates of each vertex of a vesicle and then: * * if a distance of point to plane (given by equation $D=\frac{ax_0+by_0+cz_0+d}{\sqrt{a^2+b^2+c^2}}$, where $x_0$, $y_0$ and $z_0$ are coordinates of a given vertex) is less than maximal allowed distance between vertices {\tt sqrt(vesicle->dmax)} than vertex is a candidate for crossection calculation. * */ ts_coord_list *get_crossection_with_plane(ts_vesicle *vesicle,ts_double a,ts_double b,ts_double c, ts_double d){ ts_uint i, j,k,l; ts_double pp,Dsq; // distance from the plane squared ts_double ppn1; // distance from the plane squared of a neighbor ts_vertex *vtx; ts_uint ntria=0; // number triangles ts_triangle *tria[2]; // list of triangles ts_coord_list *pts=init_coord_list(); for(i=0;ivlist->n;i++){ vtx=vesicle->vlist->vtx[i]; pp=vtx->x*a+vtx->y*b+vtx->z*c+d; Dsq=pp*pp/(a*a+b*b+c*c); if(Dsqdmax){ for(j=0;jneigh_no;j++){ ppn1=vtx->neigh[j]->x*a+vtx->neigh[j]->y*b+vtx->neigh[j]->z*c+d; if(pp*ppn1<=0){ //the combination of vertices are good candidates for a crossection //find triangle that belongs to the two vertices ntria=0; for(k=0;ktristar_no;k++){ if(vtx->tristar[k]->vertex[0]==vtx && ( vtx->tristar[k]->vertex[1]==vtx->neigh[j] || vtx->tristar[k]->vertex[2]==vtx->neigh[j]) ){ //triangle found. tria[ntria]=vtx->tristar[k]; ntria++; } } // if ntria !=1 there is probably something wrong I would say... if(ntria==0) continue; /* if(ntria!=1) { //there should be 2 triangles. of course, all some of them will be doubled. fprintf(stderr,"ntria=%u\n",ntria); fatal ("Error in mesh. 2 triangles not found",123123); } */ //find the two intersections (in general) to form a intersection line for(l=0;lvertex[0], tria[l]->vertex[1]); add_crosssection_point(pts,a,b,c,d,tria[l]->vertex[0], tria[l]->vertex[2]); add_crosssection_point(pts,a,b,c,d,tria[l]->vertex[1], tria[l]->vertex[2]); } } } } } return pts; } ts_bool add_crosssection_point(ts_coord_list *pts, ts_double a, ts_double b, ts_double c, ts_double d, ts_vertex *vtx1, ts_vertex *vtx2){ ts_double pp=vtx1->x*a+vtx1->y*b+vtx1->z*c+d; ts_double pp2=vtx2->x*a+vtx1->y*b+vtx2->z*c+d; if(pp*pp2<=0){ ts_double u=pp/(a*(vtx1->x-vtx2->x)+b*(vtx1->y-vtx2->y)+c*(vtx1->z-vtx2->z)); add_coord(pts, vtx1->x+u*(vtx2->x - vtx1->x), vtx1->y+u*(vtx2->y - vtx1->y), vtx1->z+u*(vtx2->z - vtx1->z), TS_COORD_CARTESIAN); return TS_SUCCESS; } else { return TS_FAIL; } } /** Saves calculated crossection as a png image */ ts_bool crossection_to_png(ts_coord_list *pts, char *filename){ cairo_surface_t *surface; cairo_t *cr; ts_uint i; surface = cairo_image_surface_create (CAIRO_FORMAT_RGB24, 1800, 1800); cr = cairo_create (surface); cairo_rectangle(cr, 0.0, 0.0, 1800,1800); cairo_set_source_rgb(cr, 0.3, 0.3, 0.3); cairo_fill(cr); cairo_set_line_width (cr, 5.0/30.0); cairo_translate(cr, 900,900); cairo_scale (cr, 30, 30); cairo_set_source_rgb (cr, 1.0, 1.0, 1.0); for(i=0;in;i+=2){ cairo_move_to(cr, pts->coord[i]->e1, pts->coord[i]->e2); cairo_line_to(cr, pts->coord[i+1]->e1, pts->coord[i+1]->e2); } cairo_stroke(cr); cairo_surface_write_to_png (surface,filename); cairo_surface_finish (surface); return TS_SUCCESS; } ts_bool save_crossection_snapshot(ts_coord_list *pts, ts_uint timestepno){ char filename[255]; sprintf(filename,"timestep_%.6u.png",timestepno); crossection_to_png(pts,filename); return TS_SUCCESS; }