/* vim: set ts=4 sts=4 sw=4 noet : */ #include #include "general.h" #include "energy.h" #include "vertex.h" #include "bond.h" #include #include #include #include #include /** @brief Wrapper that calculates energy of every vertex in vesicle * * Function calculated energy of every vertex in vesicle. It can be used in * initialization procedure or in recalculation of the energy after non-MCsweep * operations. However, when random move of vertex or flip of random bond occur * call to this function is not necessary nor recommended. * @param *vesicle is a pointer to vesicle. * @returns TS_SUCCESS on success. */ ts_bool mean_curvature_and_energy(ts_vesicle *vesicle){ ts_uint i; ts_vertex_list *vlist=vesicle->vlist; ts_vertex **vtx=vlist->vtx; for(i=0;in;i++){ energy_vertex(vtx[i]); } return TS_SUCCESS; } /** @brief Calculate energy of a bond (in models where energy is bond related) * * This function is experimental and currently only used in polymeres calculation (PEGs or polymeres inside the vesicle). * * @param *bond is a pointer to a bond between two vertices in polymere * @param *poly is a pointer to polymere in which we calculate te energy of the bond * @returns TS_SUCCESS on successful calculation */ inline ts_bool bond_energy(ts_bond *bond,ts_poly *poly){ //TODO: This value to be changed and implemented in data structure: ts_double d_relaxed=1.0; bond->energy=poly->k*pow(bond->bond_length-d_relaxed,2); return TS_SUCCESS; }; /** @brief Calculation of the bending energy of the vertex. * * Main function that calculates energy of the vertex \f$i\f$. Function returns \f$\frac{1}{2}(c_1+c_2-c)^2 s\f$, where \f$(c_1+c_2)/2\f$ is mean curvature, * \f$c/2\f$ is spontaneous curvature and \f$s\f$ is area per vertex \f$i\f$. * * Nearest neighbors (NN) must be ordered in counterclockwise direction for this function to work. * Firstly NNs that form two neighboring triangles are found (\f$j_m\f$, \f$j_p\f$ and common \f$j\f$). Later, the scalar product of vectors \f$x_1=(\mathbf{i}-\mathbf{j_p})\cdot (\mathbf{i}-\mathbf{j_p})(\mathbf{i}-\mathbf{j_p})\f$, \f$x_2=(\mathbf{j}-\mathbf{j_p})\cdot (\mathbf{j}-\mathbf{j_p})\f$ and \f$x_3=(\mathbf{j}-\mathbf{j_p})\cdot (\mathbf{i}-\mathbf{j_p})\f$ are calculated. From these three vectors the \f$c_{tp}=\frac{1}{\tan(\varphi_p)}\f$ is calculated, where \f$\varphi_p\f$ is the inner angle at vertex \f$j_p\f$. The procedure is repeated for \f$j_m\f$ instead of \f$j_p\f$ resulting in \f$c_{tn}\f$. * \begin{tikzpicture}{ \coordinate[label=below:$i$] (i) at (2,0); \coordinate[label=left:$j_m$] (jm) at (0,3.7); \coordinate[label=above:$j$] (j) at (2.5,6.4); \coordinate[label=right:$j_p$] (jp) at (4,2.7); \draw (i) -- (jm) -- (j) -- (jp) -- (i) -- (j); \begin{scope} \path[clip] (jm)--(i)--(j); \draw (jm) circle (0.8); \node[right] at (jm) {$\varphi_m$}; \end{scope} \begin{scope} \path[clip] (jp)--(i)--(j); \draw (jp) circle (0.8); \node[left] at (jp) {$\varphi_p$}; \end{scope} %%vertices \draw [fill=gray] (i) circle (0.1); \draw [fill=white] (j) circle (0.1); \draw [fill=white] (jp) circle (0.1); \draw [fill=white] (jm) circle (0.1); %\node[draw,circle,fill=white] at (i) {}; \end{tikzpicture} * The curvature is then calculated as \f$\mathbf{h}=\frac{1}{2}\Sigma_{k=0}^{\mathrm{neigh\_no}} c_{tp}^{(k)}+c_{tm}^{(k)} (\mathbf{j_k}-\mathbf{i})\f$, where \f$c_{tp}^{(k)}+c_{tm}^k=2\sigma^{(k)}\f$ (length in dual lattice?) and the previous equation can be written as \f$\mathbf{h}=\Sigma_{k=0}^{\mathrm{neigh\_no}}\sigma^{(k)}\cdot(\mathbf{j}-\mathbf{i})\f$ (See Kroll, p. 384, eq 70). * * From the curvature the enery is calculated by equation \f$E=\frac{1}{2}\mathbf{h}\cdot\mathbf{h}\f$. * @param *vtx is a pointer to vertex at which we want to calculate the energy * @returns TS_SUCCESS on successful calculation. */ inline ts_bool energy_vertex(ts_vertex *vtx){ ts_uint jj, i, j; ts_double edge_vector_x[7]={0,0,0,0,0,0,0}; ts_double edge_vector_y[7]={0,0,0,0,0,0,0}; ts_double edge_vector_z[7]={0,0,0,0,0,0,0}; ts_double edge_normal_x[7]={0,0,0,0,0,0,0}; ts_double edge_normal_y[7]={0,0,0,0,0,0,0}; ts_double edge_normal_z[7]={0,0,0,0,0,0,0}; ts_double edge_binormal_x[7]={0,0,0,0,0,0,0}; ts_double edge_binormal_y[7]={0,0,0,0,0,0,0}; ts_double edge_binormal_z[7]={0,0,0,0,0,0,0}; ts_double vertex_normal_x=0.0; ts_double vertex_normal_y=0.0; ts_double vertex_normal_z=0.0; // ts_triangle *triedge[2]={NULL,NULL}; ts_uint nei,neip,neim; ts_vertex *it, *k, *kp,*km; ts_triangle *lm=NULL, *lp=NULL; ts_double sumnorm; ts_double temp_length; ts_double Se11, Se21, Se22, Se31, Se32, Se33; ts_double Pv11, Pv21, Pv22, Pv31, Pv32, Pv33; ts_double We; ts_double Av, We_Av; gsl_matrix *gsl_Sv=gsl_matrix_alloc(3,3); gsl_vector_complex *Sv_eigen=gsl_vector_complex_alloc(3); gsl_eigen_nonsymm_workspace *workspace=gsl_eigen_nonsymm_alloc(3); ts_double mprod[7], phi[7], he[7]; ts_double Sv[3][3]={{0,0,0},{0,0,0},{0,0,0}}; // Here edge vector is calculated // fprintf(stderr, "Vertex has neighbours=%d\n", vtx->neigh_no); Av=0; for(i=0; itristar_no; i++){ vertex_normal_x=vertex_normal_x + vtx->tristar[i]->xnorm*vtx->tristar[i]->area; vertex_normal_y=vertex_normal_y + vtx->tristar[i]->ynorm*vtx->tristar[i]->area; vertex_normal_z=vertex_normal_z + vtx->tristar[i]->znorm*vtx->tristar[i]->area; Av+=vtx->tristar[i]->area/3; } temp_length=sqrt(pow(vertex_normal_x,2)+pow(vertex_normal_y,2)+pow(vertex_normal_z,2)); vertex_normal_x=vertex_normal_x/temp_length; vertex_normal_y=vertex_normal_y/temp_length; vertex_normal_z=vertex_normal_z/temp_length; Pv11=1-vertex_normal_x*vertex_normal_x; Pv22=1-vertex_normal_y*vertex_normal_y; Pv33=1-vertex_normal_z*vertex_normal_z; Pv21=vertex_normal_x*vertex_normal_y; Pv31=vertex_normal_x*vertex_normal_z; Pv32=vertex_normal_y*vertex_normal_z; for(jj=0;jjneigh_no;jj++){ edge_vector_x[jj]=vtx->neigh[jj]->x-vtx->x; edge_vector_y[jj]=vtx->neigh[jj]->y-vtx->y; edge_vector_z[jj]=vtx->neigh[jj]->z-vtx->z; //Here we calculate normalized edge vector temp_length=sqrt(edge_vector_x[jj]*edge_vector_x[jj]+edge_vector_y[jj]*edge_vector_y[jj]+edge_vector_z[jj]*edge_vector_z[jj]); edge_vector_x[jj]=edge_vector_x[jj]/temp_length; edge_vector_y[jj]=edge_vector_y[jj]/temp_length; edge_vector_z[jj]=edge_vector_z[jj]/temp_length; //end normalization // printf("(%f %f %f)\n", vertex_normal_x, vertex_normal_y, vertex_normal_z); it=vtx; k=vtx->neigh[jj]; nei=0; for(i=0;ineigh_no;i++){ // Finds the nn of it, that is k if(it->neigh[i]==k){ nei=i; break; } } neip=nei+1; // I don't like it.. Smells like I must have it in correct order neim=nei-1; if(neip>=it->neigh_no) neip=0; if((ts_int)neim<0) neim=it->neigh_no-1; /* casting is essential... If not there the neim is never <0 !!! */ // fprintf(stderr,"The numbers are: %u %u\n",neip, neim); km=it->neigh[neim]; // We located km and kp kp=it->neigh[neip]; if(km==NULL || kp==NULL){ fatal("energy_vertex: cannot determine km and kp!",233); } for(i=0;itristar_no;i++){ for(j=0;jtristar_no;j++){ if((it->tristar[i] == k->tristar[j])){ //ce gre za skupen trikotnik if((it->tristar[i]->vertex[0] == km || it->tristar[i]->vertex[1] == km || it->tristar[i]->vertex[2]== km )){ lm=it->tristar[i]; // lmidx=i; } else { lp=it->tristar[i]; // lpidx=i; } } } } if(lm==NULL || lp==NULL) fatal("energy_vertex: Cannot find triangles lm and lp!",233); //Triangle normals are NORMALIZED! sumnorm=sqrt( pow((lm->xnorm + lp->xnorm),2) + pow((lm->ynorm + lp->ynorm), 2) + pow((lm->znorm + lp->znorm), 2)); edge_normal_x[jj]=(lm->xnorm+ lp->xnorm)/sumnorm; edge_normal_y[jj]=(lm->ynorm+ lp->ynorm)/sumnorm; edge_normal_z[jj]=(lm->znorm+ lp->znorm)/sumnorm; edge_binormal_x[jj]=(edge_normal_y[jj]*edge_vector_z[jj])-(edge_normal_z[jj]*edge_vector_y[jj]); edge_binormal_y[jj]=-(edge_normal_x[jj]*edge_vector_z[jj])+(edge_normal_z[jj]*edge_vector_x[jj]); edge_binormal_z[jj]=(edge_normal_x[jj]*edge_vector_y[jj])-(edge_normal_y[jj]*edge_vector_x[jj]); mprod[jj]=it->x*(k->y*edge_vector_z[jj]-edge_vector_y[jj]*k->z)-it->y*(k->x*edge_vector_z[jj]-k->z*edge_vector_x[jj])+it->z*(k->x*edge_vector_y[jj]-k->y*edge_vector_x[jj]); phi[jj]=copysign(acos(lm->xnorm*lp->xnorm+lm->ynorm*lp->ynorm+lm->znorm*lp->znorm-1e-8),mprod[jj])+M_PI; // printf("ACOS arg=%e\n", lm->xnorm*lp->xnorm+lm->ynorm*lp->ynorm+lm->znorm*lp->znorm); //he was multiplied with 2 before... he[jj]=sqrt( pow((edge_vector_x[jj]),2) + pow((edge_vector_y[jj]), 2) + pow((edge_vector_z[jj]), 2))*cos(phi[jj]/2.0); // printf("phi[%d]=%f\n", jj,phi[jj]); Se11=edge_binormal_x[jj]*edge_binormal_x[jj]*he[jj]; Se21=edge_binormal_x[jj]*edge_binormal_y[jj]*he[jj]; Se22=edge_binormal_y[jj]*edge_binormal_y[jj]*he[jj]; Se31=edge_binormal_x[jj]*edge_binormal_z[jj]*he[jj]; Se32=edge_binormal_y[jj]*edge_binormal_z[jj]*he[jj]; Se33=edge_binormal_z[jj]*edge_binormal_z[jj]*he[jj]; We=vertex_normal_x*edge_normal_x[jj]+vertex_normal_y*edge_normal_y[jj]+vertex_normal_z*edge_normal_z[jj]; We_Av=We/Av; Sv[0][0]+=We_Av* ( Pv11*(Pv11*Se11+Pv21*Se21+Pv31*Se31)+Pv21*(Pv11*Se21+Pv21*Se22+Pv31*Se32)+Pv31*(Pv11*Se31+Pv21*Se32+Pv31*Se33) ); Sv[0][1]+=We_Av* (Pv21*(Pv11*Se11+Pv21*Se21+Pv31*Se31)+Pv22*(Pv11*Se21+Pv21*Se22+Pv31*Se32)+Pv32*(Pv11*Se31+Pv21*Se32+Pv31*Se33)); Sv[0][2]+=We_Av* (Pv31*(Pv11*Se11+Pv21*Se21+Pv31*Se31)+Pv32*(Pv11*Se21+Pv21*Se22+Pv31*Se32)+Pv33*(Pv11*Se31+Pv21*Se32+Pv31*Se33)); Sv[1][0]+=We_Av* (Pv11*(Pv21*Se11+Pv22*Se21+Pv32*Se31)+Pv21*(Pv21*Se21+Pv22*Se22+Pv32*Se32)+Pv31*(Pv21*Se31+Pv22*Se32+Pv32*Se33)); Sv[1][1]+=We_Av* (Pv21*(Pv21*Se11+Pv22*Se21+Pv32*Se31)+Pv22*(Pv21*Se21+Pv22*Se22+Pv32*Se32)+Pv32*(Pv21*Se31+Pv22*Se32+Pv32*Se33)); Sv[1][2]+=We_Av* (Pv31*(Pv21*Se11+Pv22*Se21+Pv32*Se31)+Pv32*(Pv21*Se21+Pv22*Se22+Pv32*Se32)+Pv33*(Pv21*Se31+Pv22*Se32+Pv32*Se33)); Sv[2][0]+=We_Av* (Pv11*(Pv31*Se11+Pv32*Se21+Pv33*Se31)+Pv21*(Pv31*Se21+Pv32*Se22+Pv33*Se32)+Pv31*(Pv31*Se31+Pv32*Se32+Pv33*Se33)); Sv[2][1]+=We_Av* (Pv21*(Pv31*Se11+Pv32*Se21+Pv33*Se31)+Pv22*(Pv31*Se21+Pv32*Se22+Pv33*Se32)+Pv32*(Pv31*Se31+Pv32*Se32+Pv33*Se33)); Sv[2][2]+=We_Av* (Pv31*(Pv31*Se11+Pv32*Se21+Pv33*Se31)+Pv32*(Pv31*Se21+Pv32*Se22+Pv33*Se32)+Pv33*(Pv31*Se31+Pv32*Se32+Pv33*Se33)); // printf("(%f %f %f); (%f %f %f); (%f %f %f)\n", edge_vector_x[jj], edge_vector_y[jj], edge_vector_z[jj], edge_normal_x[jj], edge_normal_y[jj], edge_normal_z[jj], edge_binormal_x[jj], edge_binormal_y[jj], edge_binormal_z[jj]); } // END FOR JJ gsl_matrix_set(gsl_Sv, 0,0, Sv[0][0]); gsl_matrix_set(gsl_Sv, 0,1, Sv[0][1]); gsl_matrix_set(gsl_Sv, 0,2, Sv[0][2]); gsl_matrix_set(gsl_Sv, 1,0, Sv[1][0]); gsl_matrix_set(gsl_Sv, 1,1, Sv[1][1]); gsl_matrix_set(gsl_Sv, 1,2, Sv[1][2]); gsl_matrix_set(gsl_Sv, 2,0, Sv[2][0]); gsl_matrix_set(gsl_Sv, 2,1, Sv[2][1]); gsl_matrix_set(gsl_Sv, 2,2, Sv[2][2]); // printf("Se= %f, %f, %f\n %f, %f, %f\n %f, %f, %f\n", Se11, Se21, Se31, Se21, Se22, Se32, Se31, Se32, Se33); // printf("Pv= %f, %f, %f\n %f, %f, %f\n %f, %f, %f\n", Pv11, Pv21, Pv31, Pv21, Pv22, Pv32, Pv31, Pv32, Pv33); printf("Sv= %f, %f, %f\n %f, %f, %f\n %f, %f, %f\n", Sv[0][0], Sv[0][1], Sv[0][2], Sv[1][0], Sv[1][1], Sv[1][2], Sv[2][0], Sv[2][1], Sv[2][2]); gsl_eigen_nonsymm_params(0, 1, workspace); gsl_eigen_nonsymm(gsl_Sv, Sv_eigen, workspace); printf("Eigenvalues: %f, %f, %f\n", GSL_REAL(gsl_vector_complex_get(Sv_eigen, 0)), GSL_REAL(gsl_vector_complex_get(Sv_eigen, 1)), GSL_REAL(gsl_vector_complex_get(Sv_eigen, 2)) ); vtx->energy=0.0; gsl_matrix_free(gsl_Sv); gsl_vector_complex_free(Sv_eigen); gsl_eigen_nonsymm_free(workspace); return TS_SUCCESS; } ts_bool sweep_attraction_bond_energy(ts_vesicle *vesicle){ int i; for(i=0;iblist->n;i++){ attraction_bond_energy(vesicle->blist->bond[i], vesicle->tape->w); } return TS_SUCCESS; } inline ts_bool attraction_bond_energy(ts_bond *bond, ts_double w){ if(fabs(bond->vtx1->c)>1e-16 && fabs(bond->vtx2->c)>1e-16){ bond->energy=-w; } else { bond->energy=0.0; } return TS_SUCCESS; } ts_double direct_force_energy(ts_vesicle *vesicle, ts_vertex *vtx, ts_vertex *vtx_old){ if(fabs(vtx->c)<1e-15) return 0.0; // printf("was here"); if(fabs(vesicle->tape->F)<1e-15) return 0.0; ts_double norml,ddp=0.0; ts_uint i; ts_double xnorm=0.0,ynorm=0.0,znorm=0.0; /*find normal of the vertex as sum of all the normals of the triangles surrounding it. */ for(i=0;itristar_no;i++){ xnorm+=vtx->tristar[i]->xnorm; ynorm+=vtx->tristar[i]->ynorm; znorm+=vtx->tristar[i]->znorm; } /*normalize*/ norml=sqrt(xnorm*xnorm+ynorm*ynorm+znorm*znorm); xnorm/=norml; ynorm/=norml; znorm/=norml; /*calculate ddp, perpendicular displacement*/ ddp=xnorm*(vtx->x-vtx_old->x)+ynorm*(vtx->y-vtx_old->y)+znorm*(vtx->z-vtx_old->z); /*calculate dE*/ // printf("ddp=%e",ddp); return vesicle->tape->F*ddp; } void stretchenergy(ts_vesicle *vesicle, ts_triangle *triangle){ triangle->energy=vesicle->tape->xkA0/2.0*pow((triangle->area/vesicle->tlist->a0-1.0),2); }