#include #include #include "general.h" #include "vertex.h" #include "bond.h" #include "triangle.h" #include "vesicle.h" #include "energy.h" #include "timestep.h" #include "cell.h" //#include "io.h" #include #include "vertexmove.h" #include ts_bool single_verticle_timestep(ts_vesicle *vesicle,ts_vertex *vtx,ts_double *rn){ ts_uint i; ts_double dist; ts_bool retval; ts_uint cellidx; ts_double delta_energy,oenergy; ts_double costheta,sintheta,phi,r; //This will hold all the information of vtx and its neighbours ts_vertex backupvtx[20]; memcpy((void *)&backupvtx[0],(void *)vtx,sizeof(ts_vertex)); //Some stupid tests for debugging cell occupation! /* cellidx=vertex_self_avoidance(vesicle, vtx); if(vesicle->clist->cell[cellidx]==vtx->cell){ fprintf(stderr,"Idx match!\n"); } else { fprintf(stderr,"***** Idx don't match!\n"); fatal("ENding.",1); } */ //temporarly moving the vertex // vtx->x=vtx->x+vesicle->stepsize*(2.0*rn[0]-1.0); // vtx->y=vtx->y+vesicle->stepsize*(2.0*rn[1]-1.0); // vtx->z=vtx->z+vesicle->stepsize*(2.0*rn[2]-1.0); //random move in a sphere with radius stepsize: r=vesicle->stepsize*rn[0]; phi=rn[1]*2*M_PI; costheta=2*rn[2]-1; sintheta=sqrt(1-pow(costheta,2)); vtx->x=vtx->x+r*sintheta*cos(phi); vtx->y=vtx->y+r*sintheta*sin(phi); vtx->z=vtx->z+r*costheta; //distance with neighbours check for(i=0;ineigh_no;i++){ dist=vtx_distance_sq(vtx,vtx->neigh[i]); if(dist<1.0 || dist>vesicle->dmax) { vtx=memcpy((void *)vtx,(void *)&backupvtx[0],sizeof(ts_vertex)); return TS_FAIL; } } //self avoidance check with distant vertices cellidx=vertex_self_avoidance(vesicle, vtx); //check occupation number retval=cell_occupation_number_and_internal_proximity(vesicle->clist,cellidx,vtx); if(retval==TS_FAIL){ vtx=memcpy((void *)vtx,(void *)&backupvtx[0],sizeof(ts_vertex)); return TS_FAIL; } //if all the tests are successful, then energy for vtx and neighbours is calculated for(i=0;ineigh_no;i++){ memcpy((void *)&backupvtx[i+1],(void *)vtx->neigh[i],sizeof(ts_vertex)); } delta_energy=0; //update the normals of triangles that share bead i. for(i=0;itristar_no;i++) triangle_normal_vector(vtx->tristar[i]); oenergy=vtx->energy; energy_vertex(vtx); delta_energy=vtx->xk*(vtx->energy - oenergy); //the same is done for neighbouring vertices for(i=0;ineigh_no;i++){ oenergy=vtx->neigh[i]->energy; energy_vertex(vtx->neigh[i]); delta_energy+=vtx->neigh[i]->xk*(vtx->neigh[i]->energy-oenergy); } // fprintf(stderr, "DE=%f\n",delta_energy); //MONTE CARLOOOOOOOO if(delta_energy>=0){ #ifdef TS_DOUBLE_DOUBLE if(exp(-delta_energy)< drand48() ) #endif #ifdef TS_DOUBLE_FLOAT if(expf(-delta_energy)< (ts_float)drand48()) #endif #ifdef TS_DOUBLE_LONGDOUBLE if(expl(-delta_energy)< (ts_ldouble)drand48()) #endif { //not accepted, reverting changes vtx=memcpy((void *)vtx,(void *)&backupvtx[0],sizeof(ts_vertex)); for(i=0;ineigh_no;i++){ vtx->neigh[i]=memcpy((void *)vtx->neigh[i],(void *)&backupvtx[i+1],sizeof(ts_vertex)); } //update the normals of triangles that share bead i. //TODO: check if we could backup that too? for(i=0;itristar_no;i++) triangle_normal_vector(vtx->tristar[i]); return TS_FAIL; } } // oldcellidx=vertex_self_avoidance(vesicle, &backupvtx[0]); if(vtx->cell!=vesicle->clist->cell[cellidx]){ retval=cell_add_vertex(vesicle->clist->cell[cellidx],vtx); // if(retval==TS_SUCCESS) cell_remove_vertex(vesicle->clist->cell[oldcellidx],vtx); if(retval==TS_SUCCESS) cell_remove_vertex(backupvtx[0].cell,vtx); } // if(oldcellidx); //END MONTE CARLOOOOOOO return TS_SUCCESS; }