#include #include #include "general.h" #include "sh.h" ts_spharm *sph_init(ts_vertex_list *vlist, ts_uint l){ ts_uint j,i; ts_spharm *sph=(ts_spharm *)malloc(sizeof(ts_spharm)); /* lets initialize Ylm for each vertex. */ sph->Ylmi=(ts_double ***)calloc(l,sizeof(ts_double **)); for(i=0;iYlmi[i]=(ts_double **)calloc(2*i+1,sizeof(ts_double *)); for(j=0;j<(2*i+1);j++){ sph->Ylmi[i][j]=(ts_double *)calloc(vlist->n,sizeof(ts_double)); } } /* lets initialize ulm */ sph->ulm=(ts_double **)calloc(l,sizeof(ts_double *)); for(j=0;julm[j]=(ts_double *)calloc(2*j+1,sizeof(ts_double)); } /* lets initialize co */ //NOTE: C is has zero based indexing. Code is imported from fortran and to comply with original indexes we actually generate one index more. Also second dimension is 2*j+2 instead of 2*j+2. elements starting with 0 are useles and should be ignored! sph->co=(ts_double **)calloc(l+1,sizeof(ts_double *)); for(j=0;j<=l;j++){ sph->co[j]=(ts_double *)calloc(2*j+2,sizeof(ts_double)); } sph->l=l; /* Calculate coefficients that will remain constant during all the simulation */ precomputeShCoeff(sph); return sph; } ts_bool sph_free(ts_spharm *sph){ int i,j; for(i=0;il;i++){ if(sph->ulm[i]!=NULL) free(sph->ulm[i]); if(sph->co[i]!=NULL) free(sph->co[i]); } if(sph->co[sph->l]!=NULL) free(sph->co[sph->l]); if(sph->co != NULL) free(sph->co); if(sph->ulm !=NULL) free(sph->ulm); if(sph->Ylmi!=NULL) { for(i=0;il;i++){ if(sph->Ylmi[i]!=NULL){ for(j=0;jYlmi[i][j]!=NULL) free (sph->Ylmi[i][j]); } free(sph->Ylmi[i]); } } free(sph->Ylmi); } free(sph); return TS_SUCCESS; } /* Gives you legendre polynomials. Taken from NR, p. 254 */ ts_double plgndr(ts_int l, ts_int m, ts_double x){ ts_double fact, pll, pmm, pmmp1, somx2; ts_int i,ll; #ifdef TS_DOUBLE_DOUBLE if(m<0 || m>l || fabs(x)>1.0) fatal("Bad arguments in routine plgndr",1); #endif #ifdef TS_DOUBLE_FLOAT if(m<0 || m>l || fabsf(x)>1.0) fatal("Bad arguments in routine plgndr",1); #endif #ifdef TS_DOUBLE_LONGDOUBLE if(m<0 || m>l || fabsl(x)>1.0) fatal("Bad arguments in routine plgndr",1); #endif pmm=1.0; if (m>0) { #ifdef TS_DOUBLE_DOUBLE somx2=sqrt((1.0-x)*(1.0+x)); #endif #ifdef TS_DOUBLE_FLOAT somx2=sqrtf((1.0-x)*(1.0+x)); #endif #ifdef TS_DOUBLE_LONGDOUBLE somx2=sqrtl((1.0-x)*(1.0+x)); #endif fact=1.0; for (i=1; i<=m;i++){ pmm *= -fact*somx2; fact +=2.0; } } if (l == m) return pmm; else { pmmp1=x*(2*m+1)*pmm; if(l==(m+1)) return(pmmp1); else { pll=0; /* so it can not be uninitialized */ for(ll=m+2;ll<=l;ll++){ pll=(x*(2*ll-1)*pmmp1-(ll+m-1)*pmm)/(ll-m); pmm=pmmp1; pmmp1=pll; } return(pll); } } } /** @brief: Precomputes coefficients that are required for spherical harmonics computations. */ ts_bool precomputeShCoeff(ts_spharm *sph){ ts_int i,j,al,am; ts_double **co=sph->co; for(i=1;i<=sph->l;i++){ al=i; sph->co[i][i+1]=sqrt((2.0*al+1.0)/2.0/M_PI); for(j=1;j<=i-1;j++){ am=j; sph->co[i][i+1+j]=co[i][i+j]*sqrt(1.0/(al-am+1.0)/(al+am)); sph->co[i][i+1-j]=co[i][i+1+j]; } co[i][2*i+1]=co[i][2*i]*sqrt(1.0/(2.0*al)); co[i][1]=co[i][2*i+1]; co[i][i+1]=sqrt((2.0*al+1.0)/4.0/M_PI); } return TS_SUCCESS; } /** @brief: Computes Y(l,m,theta,fi) * * Function calculates Y^l_m for vertex with given (\theta, \fi) coordinates in * spherical coordinate system. * @param l is an ts_int argument. * @param m is an ts_int argument. * @param theta is ts_double argument. * @param fi is a ts_double argument. * * (Miha's definition that is different from common definition for factor srqt(1/(2*pi)) */ ts_double shY(ts_int l,ts_int m,ts_double theta,ts_double fi){ ts_double fac1, fac2, K; int i; if(l<0 || m>l || m<-l) fatal("Error using shY function!",1); fac1=1.0; for(i=1; i<=l-abs(m);i++){ fac1 *= i; } fac2=1.0; for(i=1; i<=l+abs(m);i++){ fac2 *= i; } if(m==0){ K=sqrt(1.0/(2.0*M_PI)); } else if (m>0) { K=sqrt(1.0/(M_PI))*cos(m*fi); } else { //K=pow(-1.0,abs(m))*sqrt(1.0/(2.0*M_PI))*cos(m*fi); if(abs(m)%2==0) K=sqrt(1.0/(M_PI))*cos(m*fi); else K=-sqrt(1.0/(M_PI))*cos(m*fi); } return K*sqrt((2.0*l+1.0)/2.0*fac1/fac2)*plgndr(l,abs(m),cos(theta)); } /* Function transforms coordinates from cartesian to spherical coordinates * (r,phi, theta). */ ts_bool *cart2sph(ts_coord *coord, ts_double x, ts_double y, ts_double z){ coord->coord_type=TS_COORD_SPHERICAL; #ifdef TS_DOUBLE_DOUBLE coord->e1=sqrt(x*x+y*y+z*z); if(z==0) coord->e3=M_PI/2.0; else coord->e3=atan(sqrt(x*x+y*y)/z); coord->e2=atan2(y,x); #endif #ifdef TS_DOUBLE_FLOAT coord->e1=sqrtf(x*x+y*y+z*z); if(z==0) coord->e3=M_PI/2.0; else coord->e3=atanf(sqrtf(x*x+y*y)/z); coord->e2=atan2f(y,x); #endif #ifdef TS_DOUBLE_LONGDOUBLE coord->e1=sqrtl(x*x+y*y+z*z); if(z==0) coord->e3=M_PI/2.0; else coord->e3=atanl(sqrtl(x*x+y*y)/z); coord->e2=atan2l(y,x); #endif return TS_SUCCESS; } /* Function returns radius of the sphere with the same volume as vesicle (r0) */ ts_double getR0(ts_vesicle *vesicle){ ts_double r0; #ifdef TS_DOUBLE_DOUBLE r0=pow(vesicle->volume*3.0/4.0/M_PI,1.0/3.0); #endif #ifdef TS_DOUBLE_FLOAT r0=powf(vesicle->volume*3.0/4.0/M_PI,1.0/3.0); #endif #ifdef TS_DOUBLE_LONGDOUBLE r0=powl(vesicle->volume*3.0/4.0/M_PI,1.0/3.0); #endif return r0; } ts_bool preparationSh(ts_vesicle *vesicle, ts_double r0){ //TODO: before calling or during the call calculate area of each triangle! Can //be also done after vertexmove and bondflip // ts_uint i,j; ts_vertex **vtx=vesicle->vlist->vtx; ts_vertex *cvtx; ts_triangle *ctri; ts_double centroid[3]; ts_double r; for (i=0; ivlist->n; i++){ cvtx=vtx[i]; //cvtx->projArea=4.0*M_PI/1447.0*(cvtx->x*cvtx->x+cvtx->y*cvtx->y+cvtx->z*cvtx->z)/r0/r0; cvtx->projArea=0.0; /* go over all triangles that have a common vertex i */ for(j=0; jtristar_no; j++){ ctri=cvtx->tristar[j]; centroid[0]=(ctri->vertex[0]->x + ctri->vertex[1]->x + ctri->vertex[2]->x)/3.0; centroid[1]=(ctri->vertex[0]->y + ctri->vertex[1]->y + ctri->vertex[2]->y)/3.0; centroid[2]=(ctri->vertex[0]->z + ctri->vertex[1]->z + ctri->vertex[2]->z)/3.0; /* calculating projArea+= area(triangle)*cos(theta) */ #ifdef TS_DOUBLE_DOUBLE cvtx->projArea = cvtx->projArea + ctri->area*(-centroid[0]*ctri->xnorm - centroid[1]*ctri->ynorm - centroid[2]*ctri->znorm)/ sqrt(centroid[0]*centroid[0]+centroid[1]*centroid[1]+centroid[2]*centroid[2]); #endif #ifdef TS_DOUBLE_FLOAT cvtx->projArea = cvtx->projArea + ctri->area*(-centroid[0]*ctri->xnorm - centroid[1]*ctri->ynorm - centroid[2]*ctri->znorm)/ sqrtf(centroid[0]*centroid[0]+centroid[1]*centroid[1]+centroid[2]*centroid[2]); #endif #ifdef TS_DOUBLE_LONGDOUBLE cvtx->projArea = cvtx->projArea + ctri->area*(-centroid[0]*ctri->xnorm - centroid[1]*ctri->ynorm - centroid[2]*ctri->znorm)/ sqrtl(centroid[0]*centroid[0]+centroid[1]*centroid[1]+centroid[2]*centroid[2]); #endif } cvtx->projArea=cvtx->projArea/3.0; //we dont store spherical coordinates of vertex, so we have to calculate //r(i) at this point. #ifdef TS_DOUBLE_DOUBLE r=sqrt(cvtx->x*cvtx->x+cvtx->y*cvtx->y+cvtx->z*cvtx->z); #endif #ifdef TS_DOUBLE_FLOAT r=sqrtf(cvtx->x*cvtx->x+cvtx->y*cvtx->y+cvtx->z*cvtx->z); #endif #ifdef TS_DOUBLE_LONGDOUBLE r=sqrtl(cvtx->x*cvtx->x+cvtx->y*cvtx->y+cvtx->z*cvtx->z); #endif cvtx->relR=(r-r0)/r0; cvtx->solAngle=cvtx->projArea/r/r; } return TS_SUCCESS; } ts_bool calculateYlmi(ts_vesicle *vesicle){ ts_int i,j,k; ts_spharm *sph=vesicle->sphHarmonics; ts_coord *coord=(ts_coord *)malloc(sizeof(ts_coord)); ts_double fi, theta; ts_int m; ts_vertex *cvtx; for(k=0;kvlist->n;k++){ cvtx=vesicle->vlist->vtx[k]; sph->Ylmi[0][0][k]=sqrt(1.0/4.0/M_PI); cart2sph(coord,cvtx->x, cvtx->y, cvtx->z); fi=coord->e2; theta=coord->e3; for(i=1; il; i++){ for(j=0;jYlmi[i][j][k]=sph->co[i][m]*cos((m-i-1)*fi)*pow(-1,m-i-1)*plgndr(i,abs(m-i-1),cos(theta)); if(i==2 && j==0){ /* fprintf(stderr," **** vtx %d ****\n", k+1); fprintf(stderr,"m-i-1 =%d\n",m-i-1); fprintf(stderr,"fi =%e\n",fi); fprintf(stderr,"(m-i-1)*fi =%e\n",((ts_double)(m-i-1))*fi); fprintf(stderr,"-2*fi =%e\n",-2*fi); fprintf(stderr,"m =%d\n",m); fprintf(stderr," cos(m-i-1)=%e\n",cos((m-i-1)*fi)); fprintf(stderr," cos(-2*fi)=%e\n",cos(-2*fi)); fprintf(stderr," sph->co[i][m]=%e\n",sph->co[i][m]); fprintf(stderr," plgndr(i,abs(m-i-1),cos(theta))=%e\n",plgndr(i,abs(m-i-1),cos(theta))); */ } } //Nastudiraj!!!!! j=i; m=j+1; sph->Ylmi[i][j][k]=sph->co[i][m]*plgndr(i,0,cos(theta)); for(j=i+1;j<2*i+1;j++){ m=j+1; //Nastudiraj!!!!! sph->Ylmi[i][j][k]=sph->co[i][m]*sin((m-i-1)*fi)*plgndr(i,m-i-1,cos(theta)); } } } free(coord); return TS_SUCCESS; } ts_bool calculateUlm(ts_vesicle *vesicle){ ts_uint i,j,k; ts_vertex *cvtx; for(i=0;isphHarmonics->l;i++){ for(j=0;j<2*i;j++) vesicle->sphHarmonics->ulm[i][j]=0.0; } //TODO: call calculateYlmi !!! for(k=0;kvlist->n; k++){ cvtx=vesicle->vlist->vtx[k]; for(i=0;isphHarmonics->l;i++){ for(j=0;j<2*i+1;j++){ vesicle->sphHarmonics->ulm[i][j]+= cvtx->solAngle*cvtx->relR*vesicle->sphHarmonics->Ylmi[i][j][k]; } } } return TS_SUCCESS; }