From a8e354c7fad70eb7fdfda62ec83faf1be6c4ed44 Mon Sep 17 00:00:00 2001 From: Samo Penic <samo.penic@gmail.com> Date: Tue, 24 Jan 2023 20:03:01 +0000 Subject: [PATCH] Changes in code and README for easier compilation. May break something --- src/energy.c | 158 ++++++++++++++++++++++++++++++++++++++++++++++------ 1 files changed, 140 insertions(+), 18 deletions(-) diff --git a/src/energy.c b/src/energy.c index 61720ee..b182a87 100644 --- a/src/energy.c +++ b/src/energy.c @@ -1,33 +1,97 @@ +/* vim: set ts=4 sts=4 sw=4 noet : */ #include<stdlib.h> #include "general.h" #include "energy.h" #include "vertex.h" #include<math.h> #include<stdio.h> + + +/** @brief Wrapper that calculates energy of every vertex in vesicle + * + * Function calculated energy of every vertex in vesicle. It can be used in + * initialization procedure or in recalculation of the energy after non-MCsweep * operations. However, when random move of vertex or flip of random bond occur * call to this function is not necessary nor recommended. + * @param *vesicle is a pointer to vesicle. + * @returns TS_SUCCESS on success. +*/ ts_bool mean_curvature_and_energy(ts_vesicle *vesicle){ - ts_uint i, jj, jjp; + ts_uint i; - ts_vertex_list *vlist=&vesicle->vlist; - ts_vertex *vtx=vlist->vertex; + ts_vertex_list *vlist=vesicle->vlist; + ts_vertex **vtx=vlist->vtx; for(i=0;i<vlist->n;i++){ - //should call with zero index!!! - energy_vertex(&vtx[i]); + energy_vertex(vtx[i]); + } return TS_SUCCESS; } +/** @brief Calculate energy of a bond (in models where energy is bond related) + * + * This function is experimental and currently only used in polymeres calculation (PEGs or polymeres inside the vesicle). + * + * @param *bond is a pointer to a bond between two vertices in polymere + * @param *poly is a pointer to polymere in which we calculate te energy of the bond + * @returns TS_SUCCESS on successful calculation +*/ +inline ts_bool bond_energy(ts_bond *bond,ts_poly *poly){ +//TODO: This value to be changed and implemented in data structure: + ts_double d_relaxed=1.0; + bond->energy=poly->k*pow(bond->bond_length-d_relaxed,2); + return TS_SUCCESS; +}; +/** @brief Calculation of the bending energy of the vertex. + * + * Main function that calculates energy of the vertex \f$i\f$. Function returns \f$\frac{1}{2}(c_1+c_2-c)^2 s\f$, where \f$(c_1+c_2)/2\f$ is mean curvature, + * \f$c/2\f$ is spontaneous curvature and \f$s\f$ is area per vertex \f$i\f$. + * + * Nearest neighbors (NN) must be ordered in counterclockwise direction for this function to work. + * Firstly NNs that form two neighboring triangles are found (\f$j_m\f$, \f$j_p\f$ and common \f$j\f$). Later, the scalar product of vectors \f$x_1=(\mathbf{i}-\mathbf{j_p})\cdot (\mathbf{i}-\mathbf{j_p})(\mathbf{i}-\mathbf{j_p})\f$, \f$x_2=(\mathbf{j}-\mathbf{j_p})\cdot (\mathbf{j}-\mathbf{j_p})\f$ and \f$x_3=(\mathbf{j}-\mathbf{j_p})\cdot (\mathbf{i}-\mathbf{j_p})\f$ are calculated. From these three vectors the \f$c_{tp}=\frac{1}{\tan(\varphi_p)}\f$ is calculated, where \f$\varphi_p\f$ is the inner angle at vertex \f$j_p\f$. The procedure is repeated for \f$j_m\f$ instead of \f$j_p\f$ resulting in \f$c_{tn}\f$. + * +\begin{tikzpicture}{ +\coordinate[label=below:$i$] (i) at (2,0); +\coordinate[label=left:$j_m$] (jm) at (0,3.7); +\coordinate[label=above:$j$] (j) at (2.5,6.4); +\coordinate[label=right:$j_p$] (jp) at (4,2.7); + +\draw (i) -- (jm) -- (j) -- (jp) -- (i) -- (j); + +\begin{scope} +\path[clip] (jm)--(i)--(j); +\draw (jm) circle (0.8); +\node[right] at (jm) {$\varphi_m$}; +\end{scope} + +\begin{scope} +\path[clip] (jp)--(i)--(j); +\draw (jp) circle (0.8); +\node[left] at (jp) {$\varphi_p$}; +\end{scope} + +%%vertices +\draw [fill=gray] (i) circle (0.1); +\draw [fill=white] (j) circle (0.1); +\draw [fill=white] (jp) circle (0.1); +\draw [fill=white] (jm) circle (0.1); +%\node[draw,circle,fill=white] at (i) {}; +\end{tikzpicture} + + * The curvature is then calculated as \f$\mathbf{h}=\frac{1}{2}\Sigma_{k=0}^{\mathrm{neigh\_no}} c_{tp}^{(k)}+c_{tm}^{(k)} (\mathbf{j_k}-\mathbf{i})\f$, where \f$c_{tp}^{(k)}+c_{tm}^k=2\sigma^{(k)}\f$ (length in dual lattice?) and the previous equation can be written as \f$\mathbf{h}=\Sigma_{k=0}^{\mathrm{neigh\_no}}\sigma^{(k)}\cdot(\mathbf{j}-\mathbf{i})\f$ (See Kroll, p. 384, eq 70). + * + * From the curvature the enery is calculated by equation \f$E=\frac{1}{2}\mathbf{h}\cdot\mathbf{h}\f$. + * @param *vtx is a pointer to vertex at which we want to calculate the energy + * @returns TS_SUCCESS on successful calculation. +*/ inline ts_bool energy_vertex(ts_vertex *vtx){ -// ts_vertex *vtx=&vlist->vertex[n]-1; // Caution! 0 Indexed value! -// ts_triangle *tristar=vtx->tristar-1; ts_uint jj; ts_uint jjp,jjm; ts_vertex *j,*jp, *jm; ts_triangle *jt; - ts_double s=0,xh=0,yh=0,zh=0,txn=0,tyn=0,tzn=0; + ts_double s=0.0,xh=0.0,yh=0.0,zh=0.0,txn=0.0,tyn=0.0,tzn=0.0; ts_double x1,x2,x3,ctp,ctm,tot,xlen; ts_double h,ht; for(jj=1; jj<=vtx->neigh_no;jj++){ @@ -39,8 +103,8 @@ jp=vtx->neigh[jjp-1]; jm=vtx->neigh[jjm-1]; jt=vtx->tristar[jj-1]; - x1=vertex_distance_sq(vtx,jp); //shouldn't be zero! - x2=vertex_distance_sq(j,jp); // shouldn't be zero! + x1=vtx_distance_sq(vtx,jp); //shouldn't be zero! + x2=vtx_distance_sq(j,jp); // shouldn't be zero! x3=(j->x-jp->x)*(vtx->x-jp->x)+ (j->y-jp->y)*(vtx->y-jp->y)+ (j->z-jp->z)*(vtx->z-jp->z); @@ -54,8 +118,8 @@ #ifdef TS_DOUBLE_LONGDOUBLE ctp=x3/sqrtl(x1*x2-x3*x3); #endif - x1=vertex_distance_sq(vtx,jm); - x2=vertex_distance_sq(j,jm); + x1=vtx_distance_sq(vtx,jm); + x2=vtx_distance_sq(j,jm); x3=(j->x-jm->x)*(vtx->x-jm->x)+ (j->y-jm->y)*(vtx->y-jm->y)+ (j->z-jm->z)*(vtx->z-jm->z); @@ -70,19 +134,21 @@ #endif tot=ctp+ctm; tot=0.5*tot; - xlen=vertex_distance_sq(j,vtx); + + xlen=vtx_distance_sq(j,vtx); +/* #ifdef TS_DOUBLE_DOUBLE - vtx->bond_length[jj-1]=sqrt(xlen); + vtx->bond[jj-1]->bond_length=sqrt(xlen); #endif #ifdef TS_DOUBLE_FLOAT - vtx->bond_length[jj-1]=sqrtf(xlen); + vtx->bond[jj-1]->bond_length=sqrtf(xlen); #endif #ifdef TS_DOUBLE_LONGDOUBLE - vtx->bond_length[jj-1]=sqrtl(xlen); + vtx->bond[jj-1]->bond_length=sqrtl(xlen); #endif - vtx->bond_length_dual[jj-1]=tot*vtx->bond_length[jj-1]; - + vtx->bond[jj-1]->bond_length_dual=tot*vtx->bond[jj-1]->bond_length; +*/ s+=tot*xlen; xh+=tot*(j->x - vtx->x); yh+=tot*(j->y - vtx->y); @@ -116,7 +182,63 @@ vtx->curvature=-sqrtl(h); } #endif +// c is forced curvature energy for each vertex. Should be set to zero for +// normal circumstances. +/* the following statement is an expression for $\frac{1}{2}\int(c_1+c_2-c_0^\prime)^2\mathrm{d}A$, where $c_0^\prime=2c_0$ (twice the spontaneous curvature) */ vtx->energy=0.5*s*(vtx->curvature/s-vtx->c)*(vtx->curvature/s-vtx->c); return TS_SUCCESS; } + + + +ts_bool sweep_attraction_bond_energy(ts_vesicle *vesicle){ + int i; + for(i=0;i<vesicle->blist->n;i++){ + attraction_bond_energy(vesicle->blist->bond[i], vesicle->tape->w); + } + return TS_SUCCESS; +} + + +inline ts_bool attraction_bond_energy(ts_bond *bond, ts_double w){ + + if(fabs(bond->vtx1->c)>1e-16 && fabs(bond->vtx2->c)>1e-16){ + bond->energy=-w; + } + else { + bond->energy=0.0; + } + return TS_SUCCESS; +} + +ts_double direct_force_energy(ts_vesicle *vesicle, ts_vertex *vtx, ts_vertex *vtx_old){ + if(fabs(vtx->direct_interaction_force)<1e-15) return 0.0; +// printf("was here"); + if(fabs(vesicle->tape->F)<1e-15) return 0.0; + + ts_double norml,ddp=0.0; + ts_uint i; + ts_double xnorm=0.0,ynorm=0.0,znorm=0.0; + /*find normal of the vertex as sum of all the normals of the triangles surrounding it. */ + for(i=0;i<vtx->tristar_no;i++){ + xnorm+=vtx->tristar[i]->xnorm; + ynorm+=vtx->tristar[i]->ynorm; + znorm+=vtx->tristar[i]->znorm; + } + /*normalize*/ + norml=sqrt(xnorm*xnorm+ynorm*ynorm+znorm*znorm); + xnorm/=norml; + ynorm/=norml; + znorm/=norml; + /*calculate ddp, perpendicular displacement*/ + ddp=xnorm*(vtx->x-vtx_old->x)+ynorm*(vtx->y-vtx_old->y)+znorm*(vtx->z-vtx_old->z); + /*calculate dE*/ +// printf("ddp=%e",ddp); + return vesicle->tape->F*ddp; + +} + +void stretchenergy(ts_vesicle *vesicle, ts_triangle *triangle){ + triangle->energy=vesicle->tape->xkA0/2.0*pow((triangle->area/vesicle->tlist->a0-1.0),2); +} -- Gitblit v1.9.3