From fc6f3ef0a9822f3d5f06d38e556dbb5f2e985f4a Mon Sep 17 00:00:00 2001 From: Samo Penic <samo.penic@gmail.com> Date: Wed, 13 Jul 2016 17:33:28 +0000 Subject: [PATCH] First attempt in solving an issue of dense packed internal pegs. They are recreated as many times as needed. --- src/vertexmove.c | 304 ++++++++++++++++++++++++++++++++++++++++++++++---- 1 files changed, 279 insertions(+), 25 deletions(-) diff --git a/src/vertexmove.c b/src/vertexmove.c index f78fd61..fb74a06 100644 --- a/src/vertexmove.c +++ b/src/vertexmove.c @@ -1,3 +1,4 @@ +/* vim: set ts=4 sts=4 sw=4 noet : */ #include<stdlib.h> #include<math.h> #include "general.h" @@ -9,19 +10,21 @@ #include "timestep.h" #include "cell.h" //#include "io.h" +#include "io.h" #include<stdio.h> #include "vertexmove.h" #include <string.h> +#include "constvol.h" ts_bool single_verticle_timestep(ts_vesicle *vesicle,ts_vertex *vtx,ts_double *rn){ ts_uint i; ts_double dist; ts_bool retval; ts_uint cellidx; - ts_double delta_energy,oenergy; + ts_double delta_energy, delta_energy_cv,oenergy,dvol=0.0, darea=0.0; ts_double costheta,sintheta,phi,r; //This will hold all the information of vtx and its neighbours - ts_vertex backupvtx[20]; + ts_vertex backupvtx[20], *constvol_vtx_moved=NULL, *constvol_vtx_backup=NULL; memcpy((void *)&backupvtx[0],(void *)vtx,sizeof(ts_vertex)); //Some stupid tests for debugging cell occupation! @@ -39,7 +42,7 @@ // vtx->y=vtx->y+vesicle->stepsize*(2.0*rn[1]-1.0); // vtx->z=vtx->z+vesicle->stepsize*(2.0*rn[2]-1.0); - //random move in a sphere with radius stepsize: +//random move in a sphere with radius stepsize: r=vesicle->stepsize*rn[0]; phi=rn[1]*2*M_PI; costheta=2*rn[2]-1; @@ -49,33 +52,73 @@ vtx->z=vtx->z+r*costheta; - //distance with neighbours check +//distance with neighbours check for(i=0;i<vtx->neigh_no;i++){ dist=vtx_distance_sq(vtx,vtx->neigh[i]); + if(dist<1.0 || dist>vesicle->dmax) { + vtx=memcpy((void *)vtx,(void *)&backupvtx[0],sizeof(ts_vertex)); + return TS_FAIL; + } + } + +// Distance with grafted poly-vertex check: + if(vtx->grafted_poly!=NULL){ + dist=vtx_distance_sq(vtx,vtx->grafted_poly->vlist->vtx[0]); if(dist<1.0 || dist>vesicle->dmax) { vtx=memcpy((void *)vtx,(void *)&backupvtx[0],sizeof(ts_vertex)); return TS_FAIL; } - } - //self avoidance check with distant vertices - cellidx=vertex_self_avoidance(vesicle, vtx); - //check occupation number - retval=cell_occupation_number_and_internal_proximity(vesicle->clist,cellidx,vtx); - + } + +// TODO: Maybe faster if checks only nucleus-neighboring cells +// Nucleus penetration check: +//#define SQ(x) x*x +if(vesicle->R_nucleus>0.0){ + if ((vtx->x-vesicle->nucleus_center[0])*(vtx->x-vesicle->nucleus_center[0])+ (vtx->y-vesicle->nucleus_center[1])*(vtx->y-vesicle->nucleus_center[1]) + (vtx->z-vesicle->nucleus_center[2])*(vtx->z-vesicle->nucleus_center[2]) < vesicle->R_nucleus){ + vtx=memcpy((void *)vtx,(void *)&backupvtx[0],sizeof(ts_vertex)); + return TS_FAIL; + } +} else if(vesicle->R_nucleusX>0.0){ +// fprintf(stderr,"DEBUG, (Rx, Ry,Rz)^2=(%f,%f,%f)\n",vesicle->R_nucleusX, vesicle->R_nucleusY, vesicle->R_nucleusZ); +// if (SQ(vtx->x-vesicle->nucleus_center[0])/vesicle->R_nucleusX + SQ(vtx->y-vesicle->nucleus_center[1])/vesicle->R_nucleusY + SQ(vtx->z-vesicle->nucleus_center[2])/vesicle->R_nucleusZ < 1.0){ + if ((vtx->x-vesicle->nucleus_center[0])*(vtx->x-vesicle->nucleus_center[0])/vesicle->R_nucleusX + (vtx->y-vesicle->nucleus_center[1])*(vtx->y-vesicle->nucleus_center[1])/vesicle->R_nucleusY + (vtx->z-vesicle->nucleus_center[2])*(vtx->z-vesicle->nucleus_center[2])/vesicle->R_nucleusZ < 1.0){ +// if (SQ(vtx->x)/vesicle->R_nucleusX + SQ(vtx->y)/vesicle->R_nucleusY + SQ(vtx->z)/vesicle->R_nucleusZ < 1.0){ + vtx=memcpy((void *)vtx,(void *)&backupvtx[0],sizeof(ts_vertex)); + return TS_FAIL; + } + +} +//#undef SQ +//self avoidance check with distant vertices + cellidx=vertex_self_avoidance(vesicle, vtx); + //check occupation number + retval=cell_occupation_number_and_internal_proximity(vesicle->clist,cellidx,vtx); + if(retval==TS_FAIL){ vtx=memcpy((void *)vtx,(void *)&backupvtx[0],sizeof(ts_vertex)); return TS_FAIL; } - //if all the tests are successful, then energy for vtx and neighbours is calculated +//if all the tests are successful, then energy for vtx and neighbours is calculated for(i=0;i<vtx->neigh_no;i++){ memcpy((void *)&backupvtx[i+1],(void *)vtx->neigh[i],sizeof(ts_vertex)); } + if(vesicle->pswitch == 1 || vesicle->tape->constvolswitch>0){ + for(i=0;i<vtx->tristar_no;i++) dvol-=vtx->tristar[i]->volume; + } + if(vesicle->tape->constareaswitch==2){ + for(i=0;i<vtx->tristar_no;i++) darea-=vtx->tristar[i]->area; + + } delta_energy=0; + +// vesicle_volume(vesicle); +// fprintf(stderr,"Volume in the beginning=%1.16e\n", vesicle->volume); + //update the normals of triangles that share bead i. for(i=0;i<vtx->tristar_no;i++) triangle_normal_vector(vtx->tristar[i]); oenergy=vtx->energy; @@ -88,19 +131,76 @@ delta_energy+=vtx->neigh[i]->xk*(vtx->neigh[i]->energy-oenergy); } + if(vesicle->pswitch == 1 || vesicle->tape->constvolswitch >0){ + for(i=0;i<vtx->tristar_no;i++) dvol+=vtx->tristar[i]->volume; + if(vesicle->pswitch==1) delta_energy-=vesicle->pressure*dvol; + }; + + if(vesicle->tape->constareaswitch==2){ + /* check whether the darea is gt epsarea */ + for(i=0;i<vtx->tristar_no;i++) darea+=vtx->tristar[i]->area; + if(fabs(vesicle->area+darea-A0)>epsarea){ + //restore old state. + vtx=memcpy((void *)vtx,(void *)&backupvtx[0],sizeof(ts_vertex)); + for(i=0;i<vtx->neigh_no;i++){ + vtx->neigh[i]=memcpy((void *)vtx->neigh[i],(void *)&backupvtx[i+1],sizeof(ts_vertex)); + } + for(i=0;i<vtx->tristar_no;i++) triangle_normal_vector(vtx->tristar[i]); + //fprintf(stderr,"fajlam!\n"); + return TS_FAIL; + } + + + } + + if(vesicle->tape->constvolswitch==2){ + /*check whether the dvol is gt than epsvol */ + //fprintf(stderr,"DVOL=%1.16e\n",dvol); + if(fabs(vesicle->volume+dvol-V0)>epsvol){ + //restore old state. + vtx=memcpy((void *)vtx,(void *)&backupvtx[0],sizeof(ts_vertex)); + for(i=0;i<vtx->neigh_no;i++){ + vtx->neigh[i]=memcpy((void *)vtx->neigh[i],(void *)&backupvtx[i+1],sizeof(ts_vertex)); + } + for(i=0;i<vtx->tristar_no;i++) triangle_normal_vector(vtx->tristar[i]); + //fprintf(stderr,"fajlam!\n"); + return TS_FAIL; + } + + } else +// vesicle_volume(vesicle); +// fprintf(stderr,"Volume before=%1.16e\n", vesicle->volume); + if(vesicle->tape->constvolswitch == 1){ + retval=constvolume(vesicle, vtx, -dvol, &delta_energy_cv, &constvol_vtx_moved,&constvol_vtx_backup); + if(retval==TS_FAIL){ // if we couldn't move the vertex to assure constant volume + vtx=memcpy((void *)vtx,(void *)&backupvtx[0],sizeof(ts_vertex)); + for(i=0;i<vtx->neigh_no;i++){ + vtx->neigh[i]=memcpy((void *)vtx->neigh[i],(void *)&backupvtx[i+1],sizeof(ts_vertex)); + } + for(i=0;i<vtx->tristar_no;i++) triangle_normal_vector(vtx->tristar[i]); + // fprintf(stderr,"fajlam!\n"); + return TS_FAIL; + } +// vesicle_volume(vesicle); +// fprintf(stderr,"Volume after=%1.16e\n", vesicle->volume); +// fprintf(stderr,"Volume after-dvol=%1.16e\n", vesicle->volume-dvol); +// fprintf(stderr,"Denergy before=%e\n",delta_energy); + + delta_energy+=delta_energy_cv; +// fprintf(stderr,"Denergy after=%e\n",delta_energy); + } +/* No poly-bond energy for now! if(vtx->grafted_poly!=NULL){ delta_energy+= (pow(sqrt(vtx_distance_sq(vtx, vtx->grafted_poly->vlist->vtx[0])-1),2)- pow(sqrt(vtx_distance_sq(&backupvtx[0], vtx->grafted_poly->vlist->vtx[0])-1),2)) *vtx->grafted_poly->k; - - } - +*/ // fprintf(stderr, "DE=%f\n",delta_energy); //MONTE CARLOOOOOOOO if(delta_energy>=0){ #ifdef TS_DOUBLE_DOUBLE - if(exp(-delta_energy)< drand48() ) + if(exp(-delta_energy)< drand48()) #endif #ifdef TS_DOUBLE_FLOAT if(expf(-delta_energy)< (ts_float)drand48()) @@ -110,6 +210,7 @@ #endif { //not accepted, reverting changes + // fprintf(stderr,"MC failed\n"); vtx=memcpy((void *)vtx,(void *)&backupvtx[0],sizeof(ts_vertex)); for(i=0;i<vtx->neigh_no;i++){ vtx->neigh[i]=memcpy((void *)vtx->neigh[i],(void *)&backupvtx[i+1],sizeof(ts_vertex)); @@ -118,10 +219,18 @@ //update the normals of triangles that share bead i. for(i=0;i<vtx->tristar_no;i++) triangle_normal_vector(vtx->tristar[i]); +// fprintf(stderr, "before vtx(x,y,z)=%e,%e,%e\n",constvol_vtx_moved->x, constvol_vtx_moved->y, constvol_vtx_moved->z); + if(vesicle->tape->constvolswitch == 1){ + constvolumerestore(constvol_vtx_moved,constvol_vtx_backup); + } +// fprintf(stderr, "after vtx(x,y,z)=%e,%e,%e\n",constvol_vtx_moved->x, constvol_vtx_moved->y, constvol_vtx_moved->z); +// vesicle_volume(vesicle); +// fprintf(stderr,"Volume after fail=%1.16e\n", vesicle->volume); return TS_FAIL; } } - + //accepted + // fprintf(stderr,"MC accepted\n"); // oldcellidx=vertex_self_avoidance(vesicle, &backupvtx[0]); if(vtx->cell!=vesicle->clist->cell[cellidx]){ retval=cell_add_vertex(vesicle->clist->cell[cellidx],vtx); @@ -129,8 +238,21 @@ if(retval==TS_SUCCESS) cell_remove_vertex(backupvtx[0].cell,vtx); } + + if(vesicle->tape->constvolswitch == 2){ + vesicle->volume+=dvol; + } else + if(vesicle->tape->constvolswitch == 1){ + constvolumeaccept(vesicle,constvol_vtx_moved,constvol_vtx_backup); + } + + if(vesicle->tape->constareaswitch==2){ + vesicle->area+=darea; + } // if(oldcellidx); //END MONTE CARLOOOOOOO +// vesicle_volume(vesicle); +// fprintf(stderr,"Volume after success=%1.16e\n", vesicle->volume); return TS_SUCCESS; } @@ -139,11 +261,12 @@ ts_uint i; ts_bool retval; ts_uint cellidx; - ts_double delta_energy; +// ts_double delta_energy; ts_double costheta,sintheta,phi,r; + ts_double dist; //This will hold all the information of vtx and its neighbours ts_vertex backupvtx; - ts_bond backupbond[2]; +// ts_bond backupbond[2]; memcpy((void *)&backupvtx,(void *)vtx,sizeof(ts_vertex)); //random move in a sphere with radius stepsize: @@ -157,13 +280,23 @@ //distance with neighbours check -// for(i=0;i<vtx->neigh_no;i++){ -// dist=vtx_distance_sq(vtx,vtx->neigh[i]); -// if(dist<1.0 || dist>vesicle->dmax) { -// vtx=memcpy((void *)vtx,(void *)&backupvtx[0],sizeof(ts_vertex)); -// return TS_FAIL; -// } -// } + for(i=0;i<vtx->neigh_no;i++){ + dist=vtx_distance_sq(vtx,vtx->neigh[i]); + if(dist<1.0 || dist>vesicle->dmax) { + vtx=memcpy((void *)vtx,(void *)&backupvtx,sizeof(ts_vertex)); + return TS_FAIL; + } + } + +// Distance with grafted vesicle-vertex check: + if(vtx==poly->vlist->vtx[0]){ + dist=vtx_distance_sq(vtx,poly->grafted_vtx); + if(dist<1.0 || dist>vesicle->dmax) { + vtx=memcpy((void *)vtx,(void *)&backupvtx,sizeof(ts_vertex)); + return TS_FAIL; + } + } + //self avoidance check with distant vertices cellidx=vertex_self_avoidance(vesicle, vtx); @@ -177,6 +310,7 @@ //if all the tests are successful, then energy for vtx and neighbours is calculated +/* Energy ignored for now! delta_energy=0; for(i=0;i<vtx->bond_no;i++){ memcpy((void *)&backupbond[i],(void *)vtx->bond[i],sizeof(ts_bond)); @@ -214,6 +348,7 @@ return TS_FAIL; } } +*/ // oldcellidx=vertex_self_avoidance(vesicle, &backupvtx[0]); if(vtx->cell!=vesicle->clist->cell[cellidx]){ @@ -225,3 +360,122 @@ //END MONTE CARLOOOOOOO return TS_SUCCESS; } + + + + +ts_bool single_filament_vertex_move(ts_vesicle *vesicle,ts_poly *poly,ts_vertex *vtx,ts_double *rn){ + ts_uint i; + ts_bool retval; + ts_uint cellidx; + ts_double delta_energy; + ts_double costheta,sintheta,phi,r; + ts_double dist[2]; + //This will hold all the information of vtx and its neighbours + ts_vertex backupvtx,backupneigh[2]; + ts_bond backupbond[2]; + + //backup vertex: + memcpy((void *)&backupvtx,(void *)vtx,sizeof(ts_vertex)); + + //random move in a sphere with radius stepsize: + r=vesicle->stepsize*rn[0]; + phi=rn[1]*2*M_PI; + costheta=2*rn[2]-1; + sintheta=sqrt(1-pow(costheta,2)); + vtx->x=vtx->x+r*sintheta*cos(phi); + vtx->y=vtx->y+r*sintheta*sin(phi); + vtx->z=vtx->z+r*costheta; + + + //distance with neighbours check + for(i=0;i<vtx->bond_no;i++){ + dist[i]=vtx_distance_sq(vtx->bond[i]->vtx1,vtx->bond[i]->vtx2); + if(dist[i]<1.0 || dist[i]>vesicle->dmax) { + vtx=memcpy((void *)vtx,(void *)&backupvtx,sizeof(ts_vertex)); + return TS_FAIL; + } + } + +// TODO: Maybe faster if checks only nucleus-neighboring cells +// Nucleus penetration check: + if (vtx->x*vtx->x + vtx->y*vtx->y + vtx->z*vtx->z < vesicle->R_nucleus){ + vtx=memcpy((void *)vtx,(void *)&backupvtx,sizeof(ts_vertex)); + return TS_FAIL; + } + + + //self avoidance check with distant vertices + cellidx=vertex_self_avoidance(vesicle, vtx); + //check occupation number + retval=cell_occupation_number_and_internal_proximity(vesicle->clist,cellidx,vtx); + if(retval==TS_FAIL){ + vtx=memcpy((void *)vtx,(void *)&backupvtx,sizeof(ts_vertex)); + return TS_FAIL; + } + + //backup bonds + for(i=0;i<vtx->bond_no;i++){ + memcpy(&backupbond[i],vtx->bond[i], sizeof(ts_bond)); + vtx->bond[i]->bond_length=sqrt(dist[i]); + bond_vector(vtx->bond[i]); + } + + //backup neighboring vertices: + for(i=0;i<vtx->neigh_no;i++){ + memcpy(&backupneigh[i],vtx->neigh[i], sizeof(ts_vertex)); + } + + //if all the tests are successful, then energy for vtx and neighbours is calculated + delta_energy=0; + + if(vtx->bond_no == 2){ + vtx->energy = -(vtx->bond[0]->x*vtx->bond[1]->x + vtx->bond[0]->y*vtx->bond[1]->y + vtx->bond[0]->z*vtx->bond[1]->z)/vtx->bond[0]->bond_length/vtx->bond[1]->bond_length; + delta_energy += vtx->energy - backupvtx.energy; + } + + for(i=0;i<vtx->neigh_no;i++){ + if(vtx->neigh[i]->bond_no == 2){ + vtx->neigh[i]->energy = -(vtx->neigh[i]->bond[0]->x*vtx->neigh[i]->bond[1]->x + vtx->neigh[i]->bond[0]->y*vtx->neigh[i]->bond[1]->y + vtx->neigh[i]->bond[0]->z*vtx->neigh[i]->bond[1]->z)/vtx->neigh[i]->bond[0]->bond_length/vtx->neigh[i]->bond[1]->bond_length; + delta_energy += vtx->neigh[i]->energy - backupneigh[i].energy; + } + } + + // poly->k is filament persistence length (in units l_min) + delta_energy *= poly->k; + + if(delta_energy>=0){ +#ifdef TS_DOUBLE_DOUBLE + if(exp(-delta_energy)< drand48() ) +#endif +#ifdef TS_DOUBLE_FLOAT + if(expf(-delta_energy)< (ts_float)drand48()) +#endif +#ifdef TS_DOUBLE_LONGDOUBLE + if(expl(-delta_energy)< (ts_ldouble)drand48()) +#endif + { + //not accepted, reverting changes + vtx=memcpy((void *)vtx,(void *)&backupvtx,sizeof(ts_vertex)); + for(i=0;i<vtx->neigh_no;i++){ + memcpy(vtx->neigh[i],&backupneigh[i],sizeof(ts_vertex)); + } + for(i=0;i<vtx->bond_no;i++){ + vtx->bond[i]=memcpy((void *)vtx->bond[i],(void *)&backupbond[i],sizeof(ts_bond)); + } + + return TS_FAIL; + } + } + + +// oldcellidx=vertex_self_avoidance(vesicle, &backupvtx[0]); + if(vtx->cell!=vesicle->clist->cell[cellidx]){ + retval=cell_add_vertex(vesicle->clist->cell[cellidx],vtx); +// if(retval==TS_SUCCESS) cell_remove_vertex(vesicle->clist->cell[oldcellidx],vtx); + if(retval==TS_SUCCESS) cell_remove_vertex(backupvtx.cell,vtx); + } +// if(oldcellidx); + //END MONTE CARLOOOOOOO + return TS_SUCCESS; +} -- Gitblit v1.9.3