From e984829db39b2778e4f66c34524329ad09749c45 Mon Sep 17 00:00:00 2001
From: Samo Penic <samo.penic@gmail.com>
Date: Mon, 11 Jul 2016 19:29:21 +0000
Subject: [PATCH] Added possibility of internal pegs. It can break the system however

---
 src/sh.c |  352 +++++++++++++++++++++++++++++++++++++++++++++++++++++++++-
 1 files changed, 345 insertions(+), 7 deletions(-)

diff --git a/src/sh.c b/src/sh.c
index b494b25..3f64939 100644
--- a/src/sh.c
+++ b/src/sh.c
@@ -1,10 +1,84 @@
+/* vim: set ts=4 sts=4 sw=4 noet : */
 #include<math.h>
 #include<stdlib.h>
 #include "general.h"
 #include "sh.h"
+#include "io.h"
+#include <string.h>
+
+
+ts_spharm *sph_init(ts_vertex_list *vlist, ts_uint l){
+    ts_uint j,i;
+    ts_spharm *sph=(ts_spharm *)malloc(sizeof(ts_spharm));
+
+    sph->N=0;
+    /* lets initialize Ylm for each vertex. */
+    sph->Ylmi=(ts_double ***)calloc(l,sizeof(ts_double **));
+    for(i=0;i<l;i++){
+            sph->Ylmi[i]=(ts_double **)calloc(2*i+1,sizeof(ts_double *));
+            for(j=0;j<(2*i+1);j++){
+                sph->Ylmi[i][j]=(ts_double *)calloc(vlist->n,sizeof(ts_double));
+            }
+    }
+        
+    /* lets initialize ulm */
+    sph->ulm=(ts_double **)calloc(l,sizeof(ts_double *));
+    for(j=0;j<l;j++){
+        sph->ulm[j]=(ts_double *)calloc(2*j+1,sizeof(ts_double));
+    }
+
+    /* lets initialize sum of Ulm2 */
+    sph->sumUlm2=(ts_double **)calloc(l,sizeof(ts_double *));
+    for(j=0;j<l;j++){
+        sph->sumUlm2[j]=(ts_double *)calloc(2*j+1,sizeof(ts_double));
+    }
+
+    /* lets initialize co */
+//NOTE: C is has zero based indexing. Code is imported from fortran and to comply with original indexes we actually generate one index more. Also second dimension is 2*j+2 instead of 2*j+2. elements starting with 0 are useles and should be ignored!
+    sph->co=(ts_double **)calloc(l+1,sizeof(ts_double *));
+    for(j=0;j<=l;j++){
+        sph->co[j]=(ts_double *)calloc(2*j+2,sizeof(ts_double));
+    }
+
+    sph->l=l;   
+
+    /* Calculate coefficients that will remain constant during all the simulation */ 
+   precomputeShCoeff(sph);
+    
+    return sph;
+}
+
+
+ts_bool sph_free(ts_spharm *sph){
+    int i,j;
+    if(sph==NULL) return TS_FAIL;
+    for(i=0;i<sph->l;i++){
+        if(sph->ulm[i]!=NULL) free(sph->ulm[i]);
+        if(sph->sumUlm2[i]!=NULL) free(sph->sumUlm2[i]);
+        if(sph->co[i]!=NULL) free(sph->co[i]);
+    }
+        if(sph->co[sph->l]!=NULL) free(sph->co[sph->l]);
+    if(sph->co != NULL) free(sph->co);
+    if(sph->ulm !=NULL) free(sph->ulm);
+
+        if(sph->Ylmi!=NULL) {
+            for(i=0;i<sph->l;i++){
+                if(sph->Ylmi[i]!=NULL){
+                    for(j=0;j<i*2+1;j++){
+                        if(sph->Ylmi[i][j]!=NULL) free (sph->Ylmi[i][j]);
+                    }
+                    free(sph->Ylmi[i]);
+                }
+            }
+            free(sph->Ylmi);
+        }
+
+    free(sph);
+    return TS_SUCCESS;
+}
 
 /* Gives you legendre polynomials. Taken from NR, p. 254 */
-ts_double plgndr(ts_int l, ts_int m, ts_float x){
+ts_double plgndr(ts_int l, ts_int m, ts_double x){
 	ts_double fact, pll, pmm, pmmp1, somx2;
 	ts_int i,ll;
 
@@ -55,7 +129,39 @@
 }
 
 
-/*Computes Y(l,m,theta,fi) (Miha's definition that is different from common definition for  factor srqt(1/(2*pi)) */
+/** @brief: Precomputes coefficients that are required for spherical harmonics computations.
+
+*/
+ts_bool precomputeShCoeff(ts_spharm *sph){
+    ts_int i,j,al,am;
+    ts_double **co=sph->co;
+    for(i=1;i<=sph->l;i++){
+        al=i;
+        sph->co[i][i+1]=sqrt((2.0*al+1.0)/2.0/M_PI);
+        for(j=1;j<=i-1;j++){
+            am=j;
+            sph->co[i][i+1+j]=co[i][i+j]*sqrt(1.0/(al-am+1.0)/(al+am));
+            sph->co[i][i+1-j]=co[i][i+1+j];
+        }
+        co[i][2*i+1]=co[i][2*i]*sqrt(1.0/(2.0*al));
+        co[i][1]=co[i][2*i+1];
+        co[i][i+1]=sqrt((2.0*al+1.0)/4.0/M_PI);
+    }
+    return TS_SUCCESS;
+
+}
+
+
+/** @brief: Computes Y(l,m,theta,fi) 
+ *
+ * Function calculates Y^l_m for vertex with given (\theta, \fi) coordinates in
+ * spherical coordinate system.
+ * @param l is an ts_int argument.
+ * @param m is an ts_int argument.
+ * @param theta is ts_double argument.
+ * @param fi is a ts_double argument.
+ *
+ * (Miha's definition that is different from common definition for  factor srqt(1/(2*pi)) */
 ts_double shY(ts_int l,ts_int m,ts_double theta,ts_double fi){
 	ts_double fac1, fac2, K;
 	int i;
@@ -64,11 +170,11 @@
 		fatal("Error using shY function!",1);
 
 	fac1=1.0;
-	for(i=1; i<=l-m;i++){
+	for(i=1; i<=l-abs(m);i++){
 		fac1 *= i;
 	}
 	fac2=1.0;
-	for(i=1; i<=l+m;i++){
+	for(i=1; i<=l+abs(m);i++){
 		fac2 *= i;
 	}
 
@@ -81,10 +187,242 @@
 	else {
 		//K=pow(-1.0,abs(m))*sqrt(1.0/(2.0*M_PI))*cos(m*fi);
 		if(abs(m)%2==0)
-		K=sqrt(1.0/(M_PI))*sin(m*fi);
+		K=sqrt(1.0/(M_PI))*cos(m*fi);
 		else
-		K=-sqrt(1.0/(M_PI))*sin(m*fi);
+		K=-sqrt(1.0/(M_PI))*cos(m*fi);
 	}
 	
-	return K*sqrt((2.0*l+1.0)/2.0*fac1/fac2)*plgndr(l,abs(m),cos(theta));	
+	return K*sqrt((2.0*l+1.0)/2.0*(ts_double)(fac1/fac2))*plgndr(l,abs(m),cos(theta));	
+}
+
+
+/* Function transforms coordinates from cartesian to spherical coordinates
+ * (r,phi, theta). */
+ts_bool *cart2sph(ts_coord *coord, ts_double x, ts_double y, ts_double z){
+    coord->coord_type=TS_COORD_SPHERICAL;
+#ifdef TS_DOUBLE_DOUBLE
+    coord->e1=sqrt(x*x+y*y+z*z);
+    if(z==0) coord->e3=M_PI/2.0;
+    else coord->e3=atan2(sqrt(x*x+y*y),z);
+    coord->e2=atan2(y,x);
+#endif
+#ifdef TS_DOUBLE_FLOAT
+    coord->e1=sqrtf(x*x+y*y+z*z);
+    if(z==0) coord->e3=M_PI/2.0;
+    else coord->e3=atanf(sqrtf(x*x+y*y)/z);
+    coord->e2=atan2f(y,x);
+#endif
+#ifdef TS_DOUBLE_LONGDOUBLE
+    coord->e1=sqrtl(x*x+y*y+z*z);
+    if(z==0) coord->e3=M_PI/2.0;
+    else coord->e3=atanl(sqrtl(x*x+y*y)/z);
+    coord->e2=atan2l(y,x);
+#endif
+
+    return TS_SUCCESS;
+}
+
+
+ts_bool sph2cart(ts_coord *coord){
+    coord->coord_type=TS_COORD_CARTESIAN;
+    ts_double x,y,z;
+
+    x=coord->e1*cos(coord->e2)*sin(coord->e3);
+    y=coord->e1*sin(coord->e2)*sin(coord->e3);
+    z=coord->e1*cos(coord->e3);
+
+    coord->e1=x;
+    coord->e2=y;
+    coord->e3=z;
+
+    return TS_SUCCESS;
+}
+
+
+/* Function returns radius of the sphere with the same volume as vesicle (r0) */
+ts_double getR0(ts_vesicle *vesicle){
+    ts_double r0;
+ #ifdef TS_DOUBLE_DOUBLE
+   r0=pow(vesicle->volume*3.0/4.0/M_PI,1.0/3.0);
+#endif
+#ifdef TS_DOUBLE_FLOAT
+   r0=powf(vesicle->volume*3.0/4.0/M_PI,1.0/3.0);
+#endif
+#ifdef TS_DOUBLE_LONGDOUBLE
+   r0=powl(vesicle->volume*3.0/4.0/M_PI,1.0/3.0);
+#endif
+    return r0;
+}
+
+
+ts_bool preparationSh(ts_vesicle *vesicle, ts_double r0){
+//TODO: before calling or during the call calculate area of each triangle! Can
+//be also done after vertexmove and bondflip //
+//DONE: in energy calculation! //
+    ts_uint i,j;
+    ts_vertex **vtx=vesicle->vlist->vtx;
+    ts_vertex *cvtx;
+    ts_triangle *ctri;
+    ts_double centroid[3];
+    ts_double r;
+    for (i=0;  i<vesicle->vlist->n; i++){
+        cvtx=vtx[i];
+        //cvtx->projArea=4.0*M_PI/1447.0*(cvtx->x*cvtx->x+cvtx->y*cvtx->y+cvtx->z*cvtx->z)/r0/r0;
+        cvtx->projArea=0.0;
+
+        /* go over all triangles that have a common vertex i */
+        for(j=0; j<cvtx->tristar_no; j++){
+            ctri=cvtx->tristar[j];
+            centroid[0]=(ctri->vertex[0]->x + ctri->vertex[1]->x + ctri->vertex[2]->x)/3.0;
+            centroid[1]=(ctri->vertex[0]->y + ctri->vertex[1]->y + ctri->vertex[2]->y)/3.0;
+            centroid[2]=(ctri->vertex[0]->z + ctri->vertex[1]->z + ctri->vertex[2]->z)/3.0;
+        /* calculating projArea+= area(triangle)*cos(theta) */
+#ifdef TS_DOUBLE_DOUBLE
+            cvtx->projArea = cvtx->projArea + ctri->area*(-centroid[0]*ctri->xnorm - centroid[1]*ctri->ynorm - centroid[2]*ctri->znorm)/ sqrt(centroid[0]*centroid[0]+centroid[1]*centroid[1]+centroid[2]*centroid[2]);
+#endif
+#ifdef TS_DOUBLE_FLOAT
+            cvtx->projArea = cvtx->projArea + ctri->area*(-centroid[0]*ctri->xnorm - centroid[1]*ctri->ynorm - centroid[2]*ctri->znorm)/ sqrtf(centroid[0]*centroid[0]+centroid[1]*centroid[1]+centroid[2]*centroid[2]);
+#endif
+#ifdef TS_DOUBLE_LONGDOUBLE
+            cvtx->projArea = cvtx->projArea + ctri->area*(-centroid[0]*ctri->xnorm - centroid[1]*ctri->ynorm - centroid[2]*ctri->znorm)/ sqrtl(centroid[0]*centroid[0]+centroid[1]*centroid[1]+centroid[2]*centroid[2]);
+#endif
+        }
+
+    cvtx->projArea=cvtx->projArea/3.0;
+        //we dont store spherical coordinates of vertex, so we have to calculate
+        //r(i) at this point.
+#ifdef TS_DOUBLE_DOUBLE
+    r=sqrt(cvtx->x*cvtx->x+cvtx->y*cvtx->y+cvtx->z*cvtx->z);
+#endif
+#ifdef TS_DOUBLE_FLOAT
+    r=sqrtf(cvtx->x*cvtx->x+cvtx->y*cvtx->y+cvtx->z*cvtx->z);
+#endif
+#ifdef TS_DOUBLE_LONGDOUBLE
+    r=sqrtl(cvtx->x*cvtx->x+cvtx->y*cvtx->y+cvtx->z*cvtx->z);
+#endif
+    cvtx->relR=(r-r0)/r0;
+    cvtx->solAngle=cvtx->projArea/r/r;
+    }
+    return TS_SUCCESS;
+}
+
+
+
+ts_bool calculateYlmi(ts_vesicle *vesicle){
+    ts_int i,j,k;
+    ts_spharm *sph=vesicle->sphHarmonics;
+    ts_coord *coord=(ts_coord *)malloc(sizeof(ts_coord));
+    ts_double fi, theta;
+	ts_int m;
+    ts_vertex *cvtx;
+    for(k=0;k<vesicle->vlist->n;k++){
+        cvtx=vesicle->vlist->vtx[k];
+        sph->Ylmi[0][0][k]=sqrt(1.0/4.0/M_PI);
+        cart2sph(coord,cvtx->x, cvtx->y, cvtx->z);
+        fi=coord->e2;
+        theta=coord->e3; 
+        for(i=1; i<sph->l; i++){
+            for(j=0;j<i;j++){
+			m=j+1;
+//Nastudiraj!!!!!
+                sph->Ylmi[i][j][k]=sph->co[i][m]*cos((m-i-1)*fi)*pow(-1,m-i-1)*plgndr(i,abs(m-i-1),cos(theta));
+		if(i==2 && j==0){
+	/*	fprintf(stderr," **** vtx %d ****\n", k+1);
+		fprintf(stderr,"m-i-1 =%d\n",m-i-1);
+		fprintf(stderr,"fi =%e\n",fi);
+		fprintf(stderr,"(m-i-1)*fi =%e\n",((ts_double)(m-i-1))*fi);
+		fprintf(stderr,"-2*fi =%e\n",-2*fi);
+		fprintf(stderr,"m =%d\n",m);
+	
+		fprintf(stderr," cos(m-i-1)=%e\n",cos((m-i-1)*fi));
+		fprintf(stderr," cos(-2*fi)=%e\n",cos(-2*fi));
+		fprintf(stderr," sph->co[i][m]=%e\n",sph->co[i][m]);
+		fprintf(stderr," plgndr(i,abs(m-i-1),cos(theta))=%e\n",plgndr(i,abs(m-i-1),cos(theta)));
+*/
+		}
+            }
+//Nastudiraj!!!!!
+		j=i;
+		m=j+1;
+                sph->Ylmi[i][j][k]=sph->co[i][m]*plgndr(i,0,cos(theta));
+            for(j=i+1;j<2*i+1;j++){
+			m=j+1;
+//Nastudiraj!!!!!
+                sph->Ylmi[i][j][k]=sph->co[i][m]*sin((m-i-1)*fi)*plgndr(i,m-i-1,cos(theta));
+            }
+        }
+
+    }
+    free(coord);
+    return TS_SUCCESS;
+}
+
+
+
+ts_bool calculateUlm(ts_vesicle *vesicle){
+    ts_uint i,j,k;
+    ts_vertex *cvtx;
+    for(i=0;i<vesicle->sphHarmonics->l;i++){
+        for(j=0;j<2*i+1;j++) vesicle->sphHarmonics->ulm[i][j]=0.0;
+    }
+
+//TODO: call calculateYlmi !!!
+
+
+    for(k=0;k<vesicle->vlist->n; k++){
+        cvtx=vesicle->vlist->vtx[k];
+        for(i=0;i<vesicle->sphHarmonics->l;i++){
+            for(j=0;j<2*i+1;j++){
+                vesicle->sphHarmonics->ulm[i][j]+= cvtx->solAngle*cvtx->relR*vesicle->sphHarmonics->Ylmi[i][j][k];
+            }
+
+        }
+    }
+
+    return TS_SUCCESS;
+}
+
+
+
+
+
+ts_bool storeUlm2(ts_vesicle *vesicle){
+
+ts_spharm *sph=vesicle->sphHarmonics;
+ts_int i,j;
+for(i=0;i<sph->l;i++){
+    for(j=0;j<2*i+1;j++){
+	/* DEBUG fprintf(stderr,"sph->sumUlm2[%d][%d]=%e\n",i,j,sph->ulm[i][j]* sph->ulm[i][j]); */
+        sph->sumUlm2[i][j]+=sph->ulm[i][j]* sph->ulm[i][j];
+    }
+}
+	sph->N++;
+return TS_SUCCESS;
+}
+
+
+ts_bool saveAvgUlm2(ts_vesicle *vesicle){
+
+	FILE *fh;
+    char filename[10000];
+    strcpy(filename, command_line_args.path);
+    strcat(filename, "sph2out.dat");
+	fh=fopen(filename, "w");
+	if(fh==NULL){
+		err("Cannot open file %s for writing");
+		return TS_FAIL;
+	}
+
+	ts_spharm *sph=vesicle->sphHarmonics;
+	ts_int i,j;
+	fprintf(fh,"l,\tm,\tulm^2avg\n");
+	for(i=0;i<sph->l;i++){
+    		for(j=0;j<2*i+1;j++){
+		fprintf(fh,"%d,\t%d,\t%e\n", i, j-i, sph->sumUlm2[i][j]/(ts_double)sph->N);
+
+    		}
+    fprintf(fh,"\n");
+	}
+	fclose(fh);
+	return TS_SUCCESS;
 }

--
Gitblit v1.9.3