From e984829db39b2778e4f66c34524329ad09749c45 Mon Sep 17 00:00:00 2001 From: Samo Penic <samo.penic@gmail.com> Date: Mon, 11 Jul 2016 19:29:21 +0000 Subject: [PATCH] Added possibility of internal pegs. It can break the system however --- src/energy.c | 5 +++-- 1 files changed, 3 insertions(+), 2 deletions(-) diff --git a/src/energy.c b/src/energy.c index 695247c..4f2b386 100644 --- a/src/energy.c +++ b/src/energy.c @@ -1,3 +1,4 @@ +/* vim: set ts=4 sts=4 sw=4 noet : */ #include<stdlib.h> #include "general.h" #include "energy.h" @@ -48,7 +49,7 @@ * Main function that calculates energy of the vertex \f$i\f$. Nearest neighbors (NN) must be ordered in counterclockwise direction for this function to work. * Firstly NNs that form two neighboring triangles are found (\f$j_m\f$, \f$j_p\f$ and common \f$j\f$). Later, the scalar product of vectors \f$x_1=(\mathbf{i}-\mathbf{j_p})\cdot (\mathbf{i}-\mathbf{j_p})(\mathbf{i}-\mathbf{j_p})\f$, \f$x_2=(\mathbf{j}-\mathbf{j_p})\cdot (\mathbf{j}-\mathbf{j_p})\f$ and \f$x_3=(\mathbf{j}-\mathbf{j_p})\cdot (\mathbf{i}-\mathbf{j_p})\f$ are calculated. From these three vectors the \f$c_{tp}=\frac{1}{\tan(\varphi_p)}\f$ is calculated, where \f$\varphi_p\f$ is the inner angle at vertex \f$j_p\f$. The procedure is repeated for \f$j_m\f$ instead of \f$j_p\f$ resulting in \f$c_{tn}\f$. * - \f{tikzpicture}{ +\begin{tikzpicture}{ \coordinate[label=below:$i$] (i) at (2,0); \coordinate[label=left:$j_m$] (jm) at (0,3.7); \coordinate[label=above:$j$] (j) at (2.5,6.4); @@ -74,7 +75,7 @@ \draw [fill=white] (jp) circle (0.1); \draw [fill=white] (jm) circle (0.1); %\node[draw,circle,fill=white] at (i) {}; -\f} +\end{tikzpicture} * The curvature is then calculated as \f$\mathbf{h}=\frac{1}{2}\Sigma_{k=0}^{\mathrm{neigh\_no}} c_{tp}^{(k)}+c_{tm}^{(k)} (\mathbf{j_k}-\mathbf{i})\f$, where \f$c_{tp}^{(k)}+c_{tm}^k=2\sigma^{(k)}\f$ (length in dual lattice?) and the previous equation can be written as \f$\mathbf{h}=\Sigma_{k=0}^{\mathrm{neigh\_no}}\sigma^{(k)}\cdot(\mathbf{j}-\mathbf{i})\f$ (See Kroll, p. 384, eq 70). * -- Gitblit v1.9.3