From d43116b7d609fa9cabae4068d037c1af3a20dae8 Mon Sep 17 00:00:00 2001
From: Samo Penic <samo.penic@gmail.com>
Date: Thu, 08 Aug 2019 17:42:46 +0000
Subject: [PATCH] An attempt to fix polymer error while recreating vesicle from vtu.

---
 src/energy.c |  193 +++++++++++++++++++++++++++++++++++++++---------
 1 files changed, 157 insertions(+), 36 deletions(-)

diff --git a/src/energy.c b/src/energy.c
index 540686b..1dae415 100644
--- a/src/energy.c
+++ b/src/energy.c
@@ -1,9 +1,19 @@
+/* vim: set ts=4 sts=4 sw=4 noet : */
 #include<stdlib.h>
 #include "general.h"
 #include "energy.h"
 #include "vertex.h"
 #include<math.h>
 #include<stdio.h>
+
+
+/** @brief Wrapper that calculates energy of every vertex in vesicle
+ *  
+ *  Function calculated energy of every vertex in vesicle. It can be used in
+ *  initialization procedure or in recalculation of the energy after non-MCsweep *  operations. However, when random move of vertex or flip of random bond occur *  call to this function is not necessary nor recommended. 
+ *  @param *vesicle is a pointer to vesicle.
+ *  @returns TS_SUCCESS on success.
+*/
 ts_bool mean_curvature_and_energy(ts_vesicle *vesicle){
 
     ts_uint i;
@@ -13,37 +23,91 @@
 
     for(i=0;i<vlist->n;i++){
         energy_vertex(vtx[i]);
+        
     }
 
     return TS_SUCCESS;
 }
 
+/** @brief Calculate energy of a bond (in models where energy is bond related)
+ *
+ *  This function is experimental and currently only used in polymeres calculation (PEGs or polymeres inside the vesicle).
+ *
+ *  @param *bond is a pointer to a bond between two vertices in polymere
+ *  @param *poly is a pointer to polymere in which we calculate te energy of the bond
+ *  @returns TS_SUCCESS on successful calculation
+*/
+inline ts_bool bond_energy(ts_bond *bond,ts_poly *poly){
+//TODO: This value to be changed and implemented in data structure:
+	ts_double d_relaxed=1.0;
+	bond->energy=poly->k*pow(bond->bond_length-d_relaxed,2);
+	return TS_SUCCESS;
+};
 
+/** @brief Calculation of the bending energy of the vertex.
+ *  
+ *  Main function that calculates energy of the vertex \f$i\f$. Function returns \f$\frac{1}{2}(c_1+c_2-c)^2 s\f$, where \f$(c_1+c_2)/2\f$ is mean curvature,
+ * \f$c/2\f$ is spontaneous curvature and \f$s\f$ is area per vertex \f$i\f$.
+ *
+ * Nearest neighbors (NN) must be ordered in counterclockwise direction for this function to work.
+ *  Firstly NNs that form two neighboring triangles are found (\f$j_m\f$, \f$j_p\f$ and common \f$j\f$). Later, the scalar product of vectors \f$x_1=(\mathbf{i}-\mathbf{j_p})\cdot (\mathbf{i}-\mathbf{j_p})(\mathbf{i}-\mathbf{j_p})\f$, \f$x_2=(\mathbf{j}-\mathbf{j_p})\cdot  (\mathbf{j}-\mathbf{j_p})\f$  and \f$x_3=(\mathbf{j}-\mathbf{j_p})\cdot (\mathbf{i}-\mathbf{j_p})\f$  are calculated. From these three vectors the \f$c_{tp}=\frac{1}{\tan(\varphi_p)}\f$ is calculated, where \f$\varphi_p\f$ is the inner angle at vertex \f$j_p\f$. The procedure is repeated for \f$j_m\f$ instead of \f$j_p\f$ resulting in \f$c_{tn}\f$.
+ *  
+\begin{tikzpicture}{
+\coordinate[label=below:$i$] (i) at (2,0);
+\coordinate[label=left:$j_m$] (jm) at (0,3.7);
+\coordinate[label=above:$j$] (j) at (2.5,6.4);
+\coordinate[label=right:$j_p$] (jp) at (4,2.7);
+
+\draw (i) -- (jm) -- (j) -- (jp) -- (i) -- (j);
+
+\begin{scope}
+\path[clip] (jm)--(i)--(j);
+\draw (jm) circle (0.8);
+\node[right] at (jm) {$\varphi_m$};
+\end{scope}
+
+\begin{scope}
+\path[clip] (jp)--(i)--(j);
+\draw (jp) circle (0.8);
+\node[left] at (jp) {$\varphi_p$};
+\end{scope}
+
+%%vertices
+\draw [fill=gray] (i) circle (0.1);
+\draw [fill=white] (j) circle (0.1);
+\draw [fill=white] (jp) circle (0.1);
+\draw [fill=white] (jm) circle (0.1);
+%\node[draw,circle,fill=white] at (i) {};
+\end{tikzpicture}
+
+ * The curvature is then calculated as \f$\mathbf{h}=\frac{1}{2}\Sigma_{k=0}^{\mathrm{neigh\_no}} c_{tp}^{(k)}+c_{tm}^{(k)} (\mathbf{j_k}-\mathbf{i})\f$, where \f$c_{tp}^{(k)}+c_{tm}^k=2\sigma^{(k)}\f$ (length in dual lattice?) and the previous equation can be written as \f$\mathbf{h}=\Sigma_{k=0}^{\mathrm{neigh\_no}}\sigma^{(k)}\cdot(\mathbf{j}-\mathbf{i})\f$ (See Kroll, p. 384, eq 70).
+ *
+ * From the curvature the enery is calculated by equation \f$E=\frac{1}{2}\mathbf{h}\cdot\mathbf{h}\f$.
+ * @param *vtx is a pointer to vertex at which we want to calculate the energy
+ * @returns TS_SUCCESS on successful calculation.
+*/
 inline ts_bool energy_vertex(ts_vertex *vtx){
-//    ts_vertex *vtx=&vlist->vertex[n]-1; // Caution! 0 Indexed value!
-//    ts_triangle *tristar=vtx->tristar-1;
-    ts_vertex_data *data=vtx->data;
     ts_uint jj;
     ts_uint jjp,jjm;
     ts_vertex *j,*jp, *jm;
     ts_triangle *jt;
-    ts_double s=0,xh=0,yh=0,zh=0,txn=0,tyn=0,tzn=0;
+    ts_double s=0.0,xh=0.0,yh=0.0,zh=0.0,txn=0.0,tyn=0.0,tzn=0.0;
     ts_double x1,x2,x3,ctp,ctm,tot,xlen;
     ts_double h,ht;
-    for(jj=1; jj<=data->neigh_no;jj++){
+    for(jj=1; jj<=vtx->neigh_no;jj++){
         jjp=jj+1;
-        if(jjp>data->neigh_no) jjp=1;
+        if(jjp>vtx->neigh_no) jjp=1;
         jjm=jj-1;
-        if(jjm<1) jjm=data->neigh_no;
-        j=data->neigh[jj-1];
-        jp=data->neigh[jjp-1];
-        jm=data->neigh[jjm-1];
-        jt=data->tristar[jj-1];
+        if(jjm<1) jjm=vtx->neigh_no;
+        j=vtx->neigh[jj-1];
+        jp=vtx->neigh[jjp-1];
+        jm=vtx->neigh[jjm-1];
+        jt=vtx->tristar[jj-1];
         x1=vtx_distance_sq(vtx,jp); //shouldn't be zero!
         x2=vtx_distance_sq(j,jp); // shouldn't be zero!
-        x3=(j->data->x-jp->data->x)*(data->x-jp->data->x)+
-           (j->data->y-jp->data->y)*(data->y-jp->data->y)+
-           (j->data->z-jp->data->z)*(data->z-jp->data->z);
+        x3=(j->x-jp->x)*(vtx->x-jp->x)+
+           (j->y-jp->y)*(vtx->y-jp->y)+
+           (j->z-jp->z)*(vtx->z-jp->z);
         
 #ifdef TS_DOUBLE_DOUBLE
         ctp=x3/sqrt(x1*x2-x3*x3);
@@ -56,9 +120,9 @@
 #endif
         x1=vtx_distance_sq(vtx,jm);
         x2=vtx_distance_sq(j,jm);
-        x3=(j->data->x-jm->data->x)*(data->x-jm->data->x)+
-           (j->data->y-jm->data->y)*(data->y-jm->data->y)+
-           (j->data->z-jm->data->z)*(data->z-jm->data->z);
+        x3=(j->x-jm->x)*(vtx->x-jm->x)+
+           (j->y-jm->y)*(vtx->y-jm->y)+
+           (j->z-jm->z)*(vtx->z-jm->z);
 #ifdef TS_DOUBLE_DOUBLE
         ctm=x3/sqrt(x1*x2-x3*x3);
 #endif
@@ -70,26 +134,28 @@
 #endif
         tot=ctp+ctm;
         tot=0.5*tot;
+
         xlen=vtx_distance_sq(j,vtx);
+/*
 #ifdef  TS_DOUBLE_DOUBLE 
-        data->bond[jj-1]->data->bond_length=sqrt(xlen); 
+        vtx->bond[jj-1]->bond_length=sqrt(xlen); 
 #endif
 #ifdef  TS_DOUBLE_FLOAT
-        data->bond[jj-1]->data->bond_length=sqrtf(xlen); 
+        vtx->bond[jj-1]->bond_length=sqrtf(xlen); 
 #endif
 #ifdef  TS_DOUBLE_LONGDOUBLE 
-        data->bond[jj-1]->data->bond_length=sqrtl(xlen); 
+        vtx->bond[jj-1]->bond_length=sqrtl(xlen); 
 #endif
 
-        data->bond[jj-1]->data->bond_length_dual=tot*data->bond[jj-1]->data->bond_length;
-
+        vtx->bond[jj-1]->bond_length_dual=tot*vtx->bond[jj-1]->bond_length;
+*/
         s+=tot*xlen;
-        xh+=tot*(j->data->x - data->x);
-        yh+=tot*(j->data->y - data->y);
-        zh+=tot*(j->data->z - data->z);
-        txn+=jt->data->xnorm;
-        tyn+=jt->data->ynorm;
-        tzn+=jt->data->znorm;
+        xh+=tot*(j->x - vtx->x);
+        yh+=tot*(j->y - vtx->y);
+        zh+=tot*(j->z - vtx->z);
+        txn+=jt->xnorm;
+        tyn+=jt->ynorm;
+        tzn+=jt->znorm;
     }
     
     h=xh*xh+yh*yh+zh*zh;
@@ -97,27 +163,82 @@
     s=s/4.0; 
 #ifdef TS_DOUBLE_DOUBLE
     if(ht>=0.0) {
-        data->curvature=sqrt(h);
+        vtx->curvature=sqrt(h);
     } else {
-        data->curvature=-sqrt(h);
+        vtx->curvature=-sqrt(h);
     }
 #endif
 #ifdef TS_DOUBLE_FLOAT
     if(ht>=0.0) {
-        data->curvature=sqrtf(h);
+        vtx->curvature=sqrtf(h);
     } else {
-        data->curvature=-sqrtf(h);
+        vtx->curvature=-sqrtf(h);
     }
 #endif
 #ifdef TS_DOUBLE_LONGDOUBLE
     if(ht>=0.0) {
-        data->curvature=sqrtl(h);
+        vtx->curvature=sqrtl(h);
     } else {
-        data->curvature=-sqrtl(h);
+        vtx->curvature=-sqrtl(h);
     }
 #endif
-//TODO: MAJOR!!!! What is vtx->data->c?????????????? Here it is 0!
-    data->energy=0.5*s*(data->curvature/s-data->c)*(data->curvature/s-data->c);
+// c is forced curvature energy for each vertex. Should be set to zero for
+// normal circumstances.
+/* the following statement is an expression for $\frac{1}{2}\int(c_1+c_2-c_0^\prime)^2\mathrm{d}A$, where $c_0^\prime=2c_0$ (twice the spontaneous curvature)  */
+    vtx->energy=0.5*s*(vtx->curvature/s-vtx->c)*(vtx->curvature/s-vtx->c);
 
     return TS_SUCCESS;
 }
+
+
+
+ts_bool sweep_attraction_bond_energy(ts_vesicle *vesicle){
+	int i;
+	for(i=0;i<vesicle->blist->n;i++){
+		attraction_bond_energy(vesicle->blist->bond[i], vesicle->tape->w);
+	}
+	return TS_SUCCESS;
+}
+
+
+inline ts_bool attraction_bond_energy(ts_bond *bond, ts_double w){
+
+	if(fabs(bond->vtx1->c)>1e-16 && fabs(bond->vtx2->c)>1e-16){
+		bond->energy=-w;
+	}
+	else {
+		bond->energy=0.0;
+	}
+	return TS_SUCCESS;
+}
+
+ts_double direct_force_energy(ts_vesicle *vesicle, ts_vertex *vtx, ts_vertex *vtx_old){
+	if(fabs(vtx->c)<1e-15) return 0.0;
+//	printf("was here");
+	if(fabs(vesicle->tape->F)<1e-15) return 0.0;
+
+	ts_double norml,ddp=0.0;
+	ts_uint i;
+	ts_double xnorm=0.0,ynorm=0.0,znorm=0.0;
+	/*find normal of the vertex as sum of all the normals of the triangles surrounding it. */
+	for(i=0;i<vtx->tristar_no;i++){
+			xnorm+=vtx->tristar[i]->xnorm;
+			ynorm+=vtx->tristar[i]->ynorm;
+			znorm+=vtx->tristar[i]->znorm;
+	}
+	/*normalize*/
+	norml=sqrt(xnorm*xnorm+ynorm*ynorm+znorm*znorm);
+	xnorm/=norml;
+	ynorm/=norml;
+	znorm/=norml;
+	/*calculate ddp, perpendicular displacement*/
+	ddp=xnorm*(vtx->x-vtx_old->x)+ynorm*(vtx->y-vtx_old->y)+znorm*(vtx->z-vtx_old->z);
+	/*calculate dE*/
+//	printf("ddp=%e",ddp);
+	return vesicle->tape->F*ddp;		
+	
+}
+
+void stretchenergy(ts_vesicle *vesicle, ts_triangle *triangle){
+	triangle->energy=vesicle->tape->xkA0/2.0*pow((triangle->area/vesicle->tlist->a0-1.0),2);
+}

--
Gitblit v1.9.3