From bd826de2f539f2e48c8c01d2d7f9f34c7e97104a Mon Sep 17 00:00:00 2001
From: Samo Penic <samo.penic@gmail.com>
Date: Fri, 13 May 2016 07:43:27 +0000
Subject: [PATCH] Fix in trisurf output, inhibiting print of successful reconstruction. Multiple fixes and improvements in python module. Added symlinking of tapes into the running directories and dumping tapes from snapshots into tape files.

---
 src/energy.c |    5 +++--
 1 files changed, 3 insertions(+), 2 deletions(-)

diff --git a/src/energy.c b/src/energy.c
index 695247c..4f2b386 100644
--- a/src/energy.c
+++ b/src/energy.c
@@ -1,3 +1,4 @@
+/* vim: set ts=4 sts=4 sw=4 noet : */
 #include<stdlib.h>
 #include "general.h"
 #include "energy.h"
@@ -48,7 +49,7 @@
  *  Main function that calculates energy of the vertex \f$i\f$. Nearest neighbors (NN) must be ordered in counterclockwise direction for this function to work.
  *  Firstly NNs that form two neighboring triangles are found (\f$j_m\f$, \f$j_p\f$ and common \f$j\f$). Later, the scalar product of vectors \f$x_1=(\mathbf{i}-\mathbf{j_p})\cdot (\mathbf{i}-\mathbf{j_p})(\mathbf{i}-\mathbf{j_p})\f$, \f$x_2=(\mathbf{j}-\mathbf{j_p})\cdot  (\mathbf{j}-\mathbf{j_p})\f$  and \f$x_3=(\mathbf{j}-\mathbf{j_p})\cdot (\mathbf{i}-\mathbf{j_p})\f$  are calculated. From these three vectors the \f$c_{tp}=\frac{1}{\tan(\varphi_p)}\f$ is calculated, where \f$\varphi_p\f$ is the inner angle at vertex \f$j_p\f$. The procedure is repeated for \f$j_m\f$ instead of \f$j_p\f$ resulting in \f$c_{tn}\f$.
  *  
- \f{tikzpicture}{
+\begin{tikzpicture}{
 \coordinate[label=below:$i$] (i) at (2,0);
 \coordinate[label=left:$j_m$] (jm) at (0,3.7);
 \coordinate[label=above:$j$] (j) at (2.5,6.4);
@@ -74,7 +75,7 @@
 \draw [fill=white] (jp) circle (0.1);
 \draw [fill=white] (jm) circle (0.1);
 %\node[draw,circle,fill=white] at (i) {};
-\f}
+\end{tikzpicture}
 
  * The curvature is then calculated as \f$\mathbf{h}=\frac{1}{2}\Sigma_{k=0}^{\mathrm{neigh\_no}} c_{tp}^{(k)}+c_{tm}^{(k)} (\mathbf{j_k}-\mathbf{i})\f$, where \f$c_{tp}^{(k)}+c_{tm}^k=2\sigma^{(k)}\f$ (length in dual lattice?) and the previous equation can be written as \f$\mathbf{h}=\Sigma_{k=0}^{\mathrm{neigh\_no}}\sigma^{(k)}\cdot(\mathbf{j}-\mathbf{i})\f$ (See Kroll, p. 384, eq 70).
  *

--
Gitblit v1.9.3