From 7d44c8ef7ee873fe1d9787872cde1a7ace632c4c Mon Sep 17 00:00:00 2001 From: Samo Penic <samo.penic@gmail.com> Date: Sun, 19 Feb 2017 15:18:32 +0000 Subject: [PATCH] Librarization f trisurf. Maybe there are some (autogenerated) files that are missing. --- src/energy.c | 54 ++++++++++++++++++++++++++++++++++++++++++++++++++++-- 1 files changed, 52 insertions(+), 2 deletions(-) diff --git a/src/energy.c b/src/energy.c index 695247c..996fb16 100644 --- a/src/energy.c +++ b/src/energy.c @@ -1,3 +1,4 @@ +/* vim: set ts=4 sts=4 sw=4 noet : */ #include<stdlib.h> #include "general.h" #include "energy.h" @@ -48,7 +49,7 @@ * Main function that calculates energy of the vertex \f$i\f$. Nearest neighbors (NN) must be ordered in counterclockwise direction for this function to work. * Firstly NNs that form two neighboring triangles are found (\f$j_m\f$, \f$j_p\f$ and common \f$j\f$). Later, the scalar product of vectors \f$x_1=(\mathbf{i}-\mathbf{j_p})\cdot (\mathbf{i}-\mathbf{j_p})(\mathbf{i}-\mathbf{j_p})\f$, \f$x_2=(\mathbf{j}-\mathbf{j_p})\cdot (\mathbf{j}-\mathbf{j_p})\f$ and \f$x_3=(\mathbf{j}-\mathbf{j_p})\cdot (\mathbf{i}-\mathbf{j_p})\f$ are calculated. From these three vectors the \f$c_{tp}=\frac{1}{\tan(\varphi_p)}\f$ is calculated, where \f$\varphi_p\f$ is the inner angle at vertex \f$j_p\f$. The procedure is repeated for \f$j_m\f$ instead of \f$j_p\f$ resulting in \f$c_{tn}\f$. * - \f{tikzpicture}{ +\begin{tikzpicture}{ \coordinate[label=below:$i$] (i) at (2,0); \coordinate[label=left:$j_m$] (jm) at (0,3.7); \coordinate[label=above:$j$] (j) at (2.5,6.4); @@ -74,7 +75,7 @@ \draw [fill=white] (jp) circle (0.1); \draw [fill=white] (jm) circle (0.1); %\node[draw,circle,fill=white] at (i) {}; -\f} +\end{tikzpicture} * The curvature is then calculated as \f$\mathbf{h}=\frac{1}{2}\Sigma_{k=0}^{\mathrm{neigh\_no}} c_{tp}^{(k)}+c_{tm}^{(k)} (\mathbf{j_k}-\mathbf{i})\f$, where \f$c_{tp}^{(k)}+c_{tm}^k=2\sigma^{(k)}\f$ (length in dual lattice?) and the previous equation can be written as \f$\mathbf{h}=\Sigma_{k=0}^{\mathrm{neigh\_no}}\sigma^{(k)}\cdot(\mathbf{j}-\mathbf{i})\f$ (See Kroll, p. 384, eq 70). * @@ -184,3 +185,52 @@ return TS_SUCCESS; } + + + +ts_bool sweep_attraction_bond_energy(ts_vesicle *vesicle){ + int i; + for(i=0;i<vesicle->blist->n;i++){ + attraction_bond_energy(vesicle->blist->bond[i], vesicle->tape->w); + } + return TS_SUCCESS; +} + + +inline ts_bool attraction_bond_energy(ts_bond *bond, ts_double w){ + + if(fabs(bond->vtx1->c)>1e-16 && fabs(bond->vtx2->c)>1e-16){ + bond->energy=-w; + } + else { + bond->energy=0.0; + } + return TS_SUCCESS; +} + +ts_double direct_force_energy(ts_vesicle *vesicle, ts_vertex *vtx, ts_vertex *vtx_old){ + if(fabs(vtx->c)<1e-15) return 0.0; +// printf("was here"); + if(fabs(vesicle->tape->F)<1e-15) return 0.0; + + ts_double norml,ddp=0.0; + ts_uint i; + ts_double xnorm=0.0,ynorm=0.0,znorm=0.0; + /*find normal of the vertex as sum of all the normals of the triangles surrounding it. */ + for(i=0;i<vtx->tristar_no;i++){ + xnorm+=vtx->tristar[i]->xnorm; + ynorm+=vtx->tristar[i]->ynorm; + znorm+=vtx->tristar[i]->znorm; + } + /*normalize*/ + norml=sqrt(xnorm*xnorm+ynorm*ynorm+znorm*znorm); + xnorm/=norml; + ynorm/=norml; + znorm/=norml; + /*calculate ddp, perpendicular displacement*/ + ddp=xnorm*(vtx->x-vtx_old->x)+ynorm*(vtx->y-vtx_old->y)+znorm*(vtx->z-vtx_old->z); + /*calculate dE*/ +// printf("ddp=%e",ddp); + return vesicle->tape->F*ddp; + +} -- Gitblit v1.9.3