From 79fc9ce029be3e91d3249a654f84c7a1ce1ff9ee Mon Sep 17 00:00:00 2001 From: Samo Penic <samo.penic@gmail.com> Date: Thu, 07 Jun 2012 19:46:44 +0000 Subject: [PATCH] spherical harmonics coefficients co fixed and working. Zero based indexing was solved in such a manner, that we allocated more memory that is required by coefficients. --- src/sh.c | 233 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 1 files changed, 233 insertions(+), 0 deletions(-) diff --git a/src/sh.c b/src/sh.c index f0b19fa..12a6ce4 100644 --- a/src/sh.c +++ b/src/sh.c @@ -3,6 +3,71 @@ #include "general.h" #include "sh.h" + + +ts_spharm *sph_init(ts_vertex_list *vlist, ts_uint l){ + ts_uint j,i; + ts_spharm *sph=(ts_spharm *)malloc(sizeof(ts_spharm)); + + + /* lets initialize Ylm for each vertex. */ + sph->Ylmi=(ts_double ***)calloc(l,sizeof(ts_double **)); + for(i=0;i<l;i++){ + sph->Ylmi[i]=(ts_double **)calloc(2*i+1,sizeof(ts_double *)); + for(j=0;j<(2*i+1);j++){ + sph->Ylmi[i][j]=(ts_double *)calloc(vlist->n,sizeof(ts_double)); + } + } + + /* lets initialize ulm */ + sph->ulm=(ts_double **)calloc(l,sizeof(ts_double *)); + for(j=0;j<l;j++){ + sph->ulm[j]=(ts_double *)calloc(2*j+1,sizeof(ts_double)); + } + + + /* lets initialize co */ +//NOTE: C is has zero based indexing. Code is imported from fortran and to comply with original indexes we actually generate one index more. Also second dimension is 2*j+2 instead of 2*j+2. elements starting with 0 are useles and should be ignored! + sph->co=(ts_double **)calloc(l+1,sizeof(ts_double *)); + for(j=0;j<=l;j++){ + sph->co[j]=(ts_double *)calloc(2*j+2,sizeof(ts_double)); + } + + sph->l=l; + + /* Calculate coefficients that will remain constant during all the simulation */ + precomputeShCoeff(sph); + + return sph; +} + + +ts_bool sph_free(ts_spharm *sph){ + int i,j; + for(i=0;i<sph->l;i++){ + if(sph->ulm[i]!=NULL) free(sph->ulm[i]); + if(sph->co[i]!=NULL) free(sph->co[i]); + } + if(sph->co[sph->l]!=NULL) free(sph->co[sph->l]); + if(sph->co != NULL) free(sph->co); + if(sph->ulm !=NULL) free(sph->ulm); + + if(sph->Ylmi!=NULL) { + for(i=0;i<sph->l;i++){ + if(sph->Ylmi[i]!=NULL){ + for(j=0;j<i*2+1;j++){ + if(sph->Ylmi[i][j]!=NULL) free (sph->Ylmi[i][j]); + } + free(sph->Ylmi[i]); + } + } + free(sph->Ylmi); + } + + free(sph); + return TS_SUCCESS; +} + /* Gives you legendre polynomials. Taken from NR, p. 254 */ ts_double plgndr(ts_int l, ts_int m, ts_float x){ ts_double fact, pll, pmm, pmmp1, somx2; @@ -55,6 +120,27 @@ } + +ts_bool precomputeShCoeff(ts_spharm *sph){ + ts_int i,j,al,am; + ts_double **co=sph->co; + for(i=1;i<=sph->l;i++){ + al=i; + sph->co[i][i+1]=sqrt((2.0*al+1.0)/2.0/M_PI); + for(j=1;j<=i-1;j++){ + am=j; + sph->co[i][i+1+j]=co[i][i+j]*sqrt(1.0/(al-am+1.0)/(al+am)); + sph->co[i][i+1-j]=co[i][i+1+j]; + } + co[i][2*i+1]=co[i][2*i]*sqrt(1.0/(2.0*al)); + co[i][1]=co[i][2*i+1]; + co[i][i+1]=sqrt((2.0*al+1.0)/4.0/M_PI); + } + return TS_SUCCESS; + +} + + /*Computes Y(l,m,theta,fi) (Miha's definition that is different from common definition for factor srqt(1/(2*pi)) */ ts_double shY(ts_int l,ts_int m,ts_double theta,ts_double fi){ ts_double fac1, fac2, K; @@ -88,3 +174,150 @@ return K*sqrt((2.0*l+1.0)/2.0*fac1/fac2)*plgndr(l,abs(m),cos(theta)); } + + +/* Function transforms coordinates from cartesian to spherical coordinates + * (r,phi, theta). */ +ts_bool *cart2sph(ts_coord *coord, ts_double x, ts_double y, ts_double z){ + coord->coord_type=TS_COORD_SPHERICAL; +#ifdef TS_DOUBLE_DOUBLE + coord->e1=sqrt(x*x+y*y+z*z); + if(z==0) coord->e3=M_PI/2.0; + else coord->e3=atan(sqrt(x*x+y*y)/z); + coord->e2=atan2(y,x); +#endif +#ifdef TS_DOUBLE_FLOAT + coord->e1=sqrtf(x*x+y*y+z*z); + if(z==0) coord->e3=M_PI/2.0; + else coord->e3=atanf(sqrtf(x*x+y*y)/z); + coord->e2=atan2f(y,x); +#endif +#ifdef TS_DOUBLE_LONGDOUBLE + coord->e1=sqrtl(x*x+y*y+z*z); + if(z==0) coord->e3=M_PI/2.0; + else coord->e3=atanl(sqrtl(x*x+y*y)/z); + coord->e2=atan2l(y,x); +#endif + + return TS_SUCCESS; +} + +/* Function returns radius of the sphere with the same volume as vesicle (r0) */ +ts_double getR0(ts_vesicle *vesicle){ + ts_double r0; + #ifdef TS_DOUBLE_DOUBLE + r0=pow(vesicle->volume*3.0/4.0/M_PI,1.0/3.0); +#endif +#ifdef TS_DOUBLE_FLOAT + r0=powf(vesicle->volume*3.0/4.0/M_PI,1.0/3.0); +#endif +#ifdef TS_DOUBLE_LONGDOUBLE + r0=powl(vesicle->volume*3.0/4.0/M_PI,1.0/3.0); +#endif + return r0; +} + + +ts_bool preparationSh(ts_vesicle *vesicle, ts_double r0){ +//TODO: before calling or during the call calculate area of each triangle! Can +//be also done after vertexmove and bondflip // + ts_uint i,j; + ts_vertex **vtx=vesicle->vlist->vtx; + ts_vertex *cvtx; + ts_triangle *ctri; + ts_double centroid[3]; + ts_double r; + for (i=0; i<vesicle->vlist->n; i++){ + cvtx=vtx[i]; + //cvtx->projArea=4.0*M_PI/1447.0*(cvtx->x*cvtx->x+cvtx->y*cvtx->y+cvtx->z*cvtx->z)/r0/r0; + cvtx->projArea=0.0; + + /* go over all triangles that have a common vertex i */ + for(j=0; j<cvtx->tristar_no; j++){ + ctri=cvtx->tristar[j]; + centroid[0]=(ctri->vertex[0]->x + ctri->vertex[1]->x + ctri->vertex[2]->x)/3.0; + centroid[1]=(ctri->vertex[0]->y + ctri->vertex[1]->y + ctri->vertex[2]->y)/3.0; + centroid[2]=(ctri->vertex[0]->z + ctri->vertex[1]->z + ctri->vertex[2]->z)/3.0; + /* calculating projArea+= area(triangle)*cos(theta) */ +#ifdef TS_DOUBLE_DOUBLE + cvtx->projArea = cvtx->projArea + ctri->area*(-centroid[0]*ctri->xnorm - centroid[1]*ctri->ynorm - centroid[2]*ctri->znorm)/ sqrt(centroid[0]*centroid[0]+centroid[1]*centroid[1]+centroid[2]*centroid[2]); +#endif +#ifdef TS_DOUBLE_FLOAT + cvtx->projArea = cvtx->projArea + ctri->area*(-centroid[0]*ctri->xnorm - centroid[1]*ctri->ynorm - centroid[2]*ctri->znorm)/ sqrtf(centroid[0]*centroid[0]+centroid[1]*centroid[1]+centroid[2]*centroid[2]); +#endif +#ifdef TS_DOUBLE_LONGDOUBLE + cvtx->projArea = cvtx->projArea + ctri->area*(-centroid[0]*ctri->xnorm - centroid[1]*ctri->ynorm - centroid[2]*ctri->znorm)/ sqrtl(centroid[0]*centroid[0]+centroid[1]*centroid[1]+centroid[2]*centroid[2]); +#endif + } + + cvtx->projArea=cvtx->projArea/3.0; + //we dont store spherical coordinates of vertex, so we have to calculate + //r(i) at this point. +#ifdef TS_DOUBLE_DOUBLE + r=sqrt(cvtx->x*cvtx->x+cvtx->y*cvtx->y+cvtx->z*cvtx->z); +#endif +#ifdef TS_DOUBLE_FLOAT + r=sqrtf(cvtx->x*cvtx->x+cvtx->y*cvtx->y+cvtx->z*cvtx->z); +#endif +#ifdef TS_DOUBLE_LONGDOUBLE + r=sqrtl(cvtx->x*cvtx->x+cvtx->y*cvtx->y+cvtx->z*cvtx->z); +#endif + cvtx->relR=(r-r0)/r0; + cvtx->solAngle=cvtx->projArea/cvtx->relR * cvtx->projArea/cvtx->relR; + } + return TS_SUCCESS; +} + + + +ts_bool calculateYlmi(ts_vesicle *vesicle){ + ts_uint i,j,k; + ts_spharm *sph=vesicle->sphHarmonics; + ts_coord *coord=(ts_coord *)malloc(sizeof(ts_coord)); + ts_double fi, theta; + ts_vertex *cvtx; + for(k=0;k<vesicle->vlist->n;k++){ + cvtx=vesicle->vlist->vtx[k]; + sph->Ylmi[0][0][k]=sqrt(1.0/4.0/M_PI); + cart2sph(coord,cvtx->x, cvtx->y, cvtx->z); + fi=coord->e2; + theta=coord->e3; + for(i=0; i<sph->l; i++){ + for(j=0;j<i;j++){ + sph->Ylmi[i][j][k]=sph->co[i][j]*cos((j-i-1)*fi)*pow(-1,j-i-1)*plgndr(i,abs(j-i-1),cos(theta)); + } + sph->Ylmi[i][j+1][k]=sph->co[i][j+1]*plgndr(i,0,cos(theta)); + for(j=sph->l;j<2*i;j++){ + sph->Ylmi[i][j][k]=sph->co[i][j]*sin((j-i-1)*fi)*plgndr(i,j-i-1,cos(theta)); + } + } + + } + free(coord); + return TS_SUCCESS; +} + + + +ts_bool calculateUlm(ts_vesicle *vesicle){ + ts_uint i,j,k; + ts_vertex *cvtx; + for(i=0;i<vesicle->sphHarmonics->l;i++){ + for(j=0;j<2*i;j++) vesicle->sphHarmonics->ulm[i][j]=0.0; + } + +//TODO: call calculateYlmi !!! + + + for(k=0;k<vesicle->vlist->n; k++){ + cvtx=vesicle->vlist->vtx[k]; + for(i=0;i<vesicle->sphHarmonics->l;i++){ + for(j=0;j<2*i;j++){ + vesicle->sphHarmonics->ulm[i][j]+= cvtx->solAngle*cvtx->relR*vesicle->sphHarmonics->Ylmi[i][j][k]; + } + + } + } + + return TS_SUCCESS; +} -- Gitblit v1.9.3