From 608cbe1dd70feed73f702459c52876bf62f276b7 Mon Sep 17 00:00:00 2001 From: Samo Penic <samo.penic@gmail.com> Date: Mon, 06 Jul 2020 07:44:11 +0000 Subject: [PATCH] Triangles are in right order. --- src/energy.c | 319 +++++++++++++++++++++++++++++++++++++---------------- 1 files changed, 222 insertions(+), 97 deletions(-) diff --git a/src/energy.c b/src/energy.c index 540686b..1f2bd1c 100644 --- a/src/energy.c +++ b/src/energy.c @@ -1,9 +1,20 @@ +/* vim: set ts=4 sts=4 sw=4 noet : */ #include<stdlib.h> #include "general.h" #include "energy.h" #include "vertex.h" +#include "bond.h" #include<math.h> #include<stdio.h> + + +/** @brief Wrapper that calculates energy of every vertex in vesicle + * + * Function calculated energy of every vertex in vesicle. It can be used in + * initialization procedure or in recalculation of the energy after non-MCsweep * operations. However, when random move of vertex or flip of random bond occur * call to this function is not necessary nor recommended. + * @param *vesicle is a pointer to vesicle. + * @returns TS_SUCCESS on success. +*/ ts_bool mean_curvature_and_energy(ts_vesicle *vesicle){ ts_uint i; @@ -13,111 +24,225 @@ for(i=0;i<vlist->n;i++){ energy_vertex(vtx[i]); + } return TS_SUCCESS; } +/** @brief Calculate energy of a bond (in models where energy is bond related) + * + * This function is experimental and currently only used in polymeres calculation (PEGs or polymeres inside the vesicle). + * + * @param *bond is a pointer to a bond between two vertices in polymere + * @param *poly is a pointer to polymere in which we calculate te energy of the bond + * @returns TS_SUCCESS on successful calculation +*/ +inline ts_bool bond_energy(ts_bond *bond,ts_poly *poly){ +//TODO: This value to be changed and implemented in data structure: + ts_double d_relaxed=1.0; + bond->energy=poly->k*pow(bond->bond_length-d_relaxed,2); + return TS_SUCCESS; +}; +/** @brief Calculation of the bending energy of the vertex. + * + * Main function that calculates energy of the vertex \f$i\f$. Function returns \f$\frac{1}{2}(c_1+c_2-c)^2 s\f$, where \f$(c_1+c_2)/2\f$ is mean curvature, + * \f$c/2\f$ is spontaneous curvature and \f$s\f$ is area per vertex \f$i\f$. + * + * Nearest neighbors (NN) must be ordered in counterclockwise direction for this function to work. + * Firstly NNs that form two neighboring triangles are found (\f$j_m\f$, \f$j_p\f$ and common \f$j\f$). Later, the scalar product of vectors \f$x_1=(\mathbf{i}-\mathbf{j_p})\cdot (\mathbf{i}-\mathbf{j_p})(\mathbf{i}-\mathbf{j_p})\f$, \f$x_2=(\mathbf{j}-\mathbf{j_p})\cdot (\mathbf{j}-\mathbf{j_p})\f$ and \f$x_3=(\mathbf{j}-\mathbf{j_p})\cdot (\mathbf{i}-\mathbf{j_p})\f$ are calculated. From these three vectors the \f$c_{tp}=\frac{1}{\tan(\varphi_p)}\f$ is calculated, where \f$\varphi_p\f$ is the inner angle at vertex \f$j_p\f$. The procedure is repeated for \f$j_m\f$ instead of \f$j_p\f$ resulting in \f$c_{tn}\f$. + * +\begin{tikzpicture}{ +\coordinate[label=below:$i$] (i) at (2,0); +\coordinate[label=left:$j_m$] (jm) at (0,3.7); +\coordinate[label=above:$j$] (j) at (2.5,6.4); +\coordinate[label=right:$j_p$] (jp) at (4,2.7); + +\draw (i) -- (jm) -- (j) -- (jp) -- (i) -- (j); + +\begin{scope} +\path[clip] (jm)--(i)--(j); +\draw (jm) circle (0.8); +\node[right] at (jm) {$\varphi_m$}; +\end{scope} + +\begin{scope} +\path[clip] (jp)--(i)--(j); +\draw (jp) circle (0.8); +\node[left] at (jp) {$\varphi_p$}; +\end{scope} + +%%vertices +\draw [fill=gray] (i) circle (0.1); +\draw [fill=white] (j) circle (0.1); +\draw [fill=white] (jp) circle (0.1); +\draw [fill=white] (jm) circle (0.1); +%\node[draw,circle,fill=white] at (i) {}; +\end{tikzpicture} + + * The curvature is then calculated as \f$\mathbf{h}=\frac{1}{2}\Sigma_{k=0}^{\mathrm{neigh\_no}} c_{tp}^{(k)}+c_{tm}^{(k)} (\mathbf{j_k}-\mathbf{i})\f$, where \f$c_{tp}^{(k)}+c_{tm}^k=2\sigma^{(k)}\f$ (length in dual lattice?) and the previous equation can be written as \f$\mathbf{h}=\Sigma_{k=0}^{\mathrm{neigh\_no}}\sigma^{(k)}\cdot(\mathbf{j}-\mathbf{i})\f$ (See Kroll, p. 384, eq 70). + * + * From the curvature the enery is calculated by equation \f$E=\frac{1}{2}\mathbf{h}\cdot\mathbf{h}\f$. + * @param *vtx is a pointer to vertex at which we want to calculate the energy + * @returns TS_SUCCESS on successful calculation. +*/ inline ts_bool energy_vertex(ts_vertex *vtx){ -// ts_vertex *vtx=&vlist->vertex[n]-1; // Caution! 0 Indexed value! -// ts_triangle *tristar=vtx->tristar-1; - ts_vertex_data *data=vtx->data; - ts_uint jj; - ts_uint jjp,jjm; - ts_vertex *j,*jp, *jm; - ts_triangle *jt; - ts_double s=0,xh=0,yh=0,zh=0,txn=0,tyn=0,tzn=0; - ts_double x1,x2,x3,ctp,ctm,tot,xlen; - ts_double h,ht; - for(jj=1; jj<=data->neigh_no;jj++){ - jjp=jj+1; - if(jjp>data->neigh_no) jjp=1; - jjm=jj-1; - if(jjm<1) jjm=data->neigh_no; - j=data->neigh[jj-1]; - jp=data->neigh[jjp-1]; - jm=data->neigh[jjm-1]; - jt=data->tristar[jj-1]; - x1=vtx_distance_sq(vtx,jp); //shouldn't be zero! - x2=vtx_distance_sq(j,jp); // shouldn't be zero! - x3=(j->data->x-jp->data->x)*(data->x-jp->data->x)+ - (j->data->y-jp->data->y)*(data->y-jp->data->y)+ - (j->data->z-jp->data->z)*(data->z-jp->data->z); - -#ifdef TS_DOUBLE_DOUBLE - ctp=x3/sqrt(x1*x2-x3*x3); -#endif -#ifdef TS_DOUBLE_FLOAT - ctp=x3/sqrtf(x1*x2-x3*x3); -#endif -#ifdef TS_DOUBLE_LONGDOUBLE - ctp=x3/sqrtl(x1*x2-x3*x3); -#endif - x1=vtx_distance_sq(vtx,jm); - x2=vtx_distance_sq(j,jm); - x3=(j->data->x-jm->data->x)*(data->x-jm->data->x)+ - (j->data->y-jm->data->y)*(data->y-jm->data->y)+ - (j->data->z-jm->data->z)*(data->z-jm->data->z); -#ifdef TS_DOUBLE_DOUBLE - ctm=x3/sqrt(x1*x2-x3*x3); -#endif -#ifdef TS_DOUBLE_FLOAT - ctm=x3/sqrtf(x1*x2-x3*x3); -#endif -#ifdef TS_DOUBLE_LONGDOUBLE - ctm=x3/sqrtl(x1*x2-x3*x3); -#endif - tot=ctp+ctm; - tot=0.5*tot; - xlen=vtx_distance_sq(j,vtx); -#ifdef TS_DOUBLE_DOUBLE - data->bond[jj-1]->data->bond_length=sqrt(xlen); -#endif -#ifdef TS_DOUBLE_FLOAT - data->bond[jj-1]->data->bond_length=sqrtf(xlen); -#endif -#ifdef TS_DOUBLE_LONGDOUBLE - data->bond[jj-1]->data->bond_length=sqrtl(xlen); -#endif + ts_uint jj, i, j; + ts_double edge_vector_x[7]={0,0,0,0,0,0,0}; + ts_double edge_vector_y[7]={0,0,0,0,0,0,0}; + ts_double edge_vector_z[7]={0,0,0,0,0,0,0}; + ts_double edge_normal_x[7]={0,0,0,0,0,0,0}; + ts_double edge_normal_y[7]={0,0,0,0,0,0,0}; + ts_double edge_normal_z[7]={0,0,0,0,0,0,0}; + ts_double edge_binormal_x[7]={0,0,0,0,0,0,0}; + ts_double edge_binormal_y[7]={0,0,0,0,0,0,0}; + ts_double edge_binormal_z[7]={0,0,0,0,0,0,0}; + ts_double vertex_normal_x=0.0; + ts_double vertex_normal_y=0.0; + ts_double vertex_normal_z=0.0; +// ts_triangle *triedge[2]={NULL,NULL}; - data->bond[jj-1]->data->bond_length_dual=tot*data->bond[jj-1]->data->bond_length; + ts_uint nei,neip,neim; + ts_vertex *it, *k, *kp,*km; + ts_triangle *lm=NULL, *lp=NULL; + ts_double sumnorm; - s+=tot*xlen; - xh+=tot*(j->data->x - data->x); - yh+=tot*(j->data->y - data->y); - zh+=tot*(j->data->z - data->z); - txn+=jt->data->xnorm; - tyn+=jt->data->ynorm; - tzn+=jt->data->znorm; - } - - h=xh*xh+yh*yh+zh*zh; - ht=txn*xh+tyn*yh + tzn*zh; - s=s/4.0; -#ifdef TS_DOUBLE_DOUBLE - if(ht>=0.0) { - data->curvature=sqrt(h); - } else { - data->curvature=-sqrt(h); - } -#endif -#ifdef TS_DOUBLE_FLOAT - if(ht>=0.0) { - data->curvature=sqrtf(h); - } else { - data->curvature=-sqrtf(h); - } -#endif -#ifdef TS_DOUBLE_LONGDOUBLE - if(ht>=0.0) { - data->curvature=sqrtl(h); - } else { - data->curvature=-sqrtl(h); - } -#endif -//TODO: MAJOR!!!! What is vtx->data->c?????????????? Here it is 0! - data->energy=0.5*s*(data->curvature/s-data->c)*(data->curvature/s-data->c); + // Here edge vector is calculated +// fprintf(stderr, "Vertex has neighbours=%d\n", vtx->neigh_no); + for(jj=0;jj<vtx->neigh_no;jj++){ + edge_vector_x[jj]=vtx->neigh[jj]->x-vtx->x; + edge_vector_y[jj]=vtx->neigh[jj]->y-vtx->y; + edge_vector_z[jj]=vtx->neigh[jj]->z-vtx->z; - return TS_SUCCESS; + + it=vtx; + k=vtx->neigh[jj]; + nei=0; + for(i=0;i<it->neigh_no;i++){ // Finds the nn of it, that is k + if(it->neigh[i]==k){ + nei=i; + break; + } + } + neip=nei+1; // I don't like it.. Smells like I must have it in correct order + neim=nei-1; + if(neip>=it->neigh_no) neip=0; + if((ts_int)neim<0) neim=it->neigh_no-1; /* casting is essential... If not +there the neim is never <0 !!! */ + // fprintf(stderr,"The numbers are: %u %u\n",neip, neim); + km=it->neigh[neim]; // We located km and kp + kp=it->neigh[neip]; + + if(km==NULL || kp==NULL){ + fatal("In bondflip, cannot determine km and kp!",999); + } + + for(i=0;i<it->tristar_no;i++){ + for(j=0;j<k->tristar_no;j++){ + if((it->tristar[i] == k->tristar[j])){ //ce gre za skupen trikotnik + if((it->tristar[i]->vertex[0] == km || it->tristar[i]->vertex[1] +== km || it->tristar[i]->vertex[2]== km )){ + lm=it->tristar[i]; + // lmidx=i; + } + else + { + lp=it->tristar[i]; + // lpidx=i; + } + + } + } + } +if(lm==NULL || lp==NULL) fatal("ts_flip_bond: Cannot find triangles lm and lp!",999); + + +/* + // We find lm and lp from k->tristar ! + cnt=0; + for(i=0;i<vtx->tristar_no;i++){ + for(j=0;j<vtx->neigh[jj]->tristar_no;j++){ + if((vtx->tristar[i] == vtx->neigh[jj]->tristar[j])){ //ce gre za skupen trikotnik + triedge[cnt]=vtx->tristar[i]; + cnt++; + } + } + } + if(cnt!=2) fatal("ts_energy_vertex: both triangles not found!", 133); +*/ + + sumnorm=sqrt( pow((lm->xnorm + lp->xnorm),2) + pow((lm->ynorm + lp->ynorm), 2) + pow((lm->znorm + lp->znorm), 2)); + + edge_normal_x[jj]=(lm->xnorm+ lp->xnorm)/sumnorm; + edge_normal_y[jj]=(lm->ynorm+ lp->ynorm)/sumnorm; + edge_normal_z[jj]=(lm->znorm+ lp->znorm)/sumnorm; + + + edge_binormal_x[jj]=(edge_normal_y[jj]*edge_vector_z[jj])-(edge_normal_z[jj]*edge_vector_y[jj]); + edge_binormal_y[jj]=-(edge_normal_x[jj]*edge_vector_z[jj])+(edge_normal_z[jj]*edge_vector_x[jj]); + edge_binormal_z[jj]=(edge_normal_x[jj]*edge_vector_y[jj])-(edge_normal_y[jj]*edge_vector_x[jj]); + + printf("(%f %f %f); (%f %f %f); (%f %f %f)\n", edge_vector_x[jj], edge_vector_y[jj], edge_vector_z[jj], edge_normal_x[jj], edge_normal_y[jj], edge_normal_z[jj], edge_binormal_x[jj], edge_binormal_y[jj], edge_binormal_z[jj]); + + } + for(i=0; i<vtx->tristar_no; i++){ + vertex_normal_x=vertex_normal_x + vtx->tristar[i]->xnorm*vtx->tristar[i]->area; + vertex_normal_y=vertex_normal_y + vtx->tristar[i]->ynorm*vtx->tristar[i]->area; + vertex_normal_z=vertex_normal_z + vtx->tristar[i]->znorm*vtx->tristar[i]->area; + } + printf("(%f %f %f)\n", vertex_normal_x, vertex_normal_y, vertex_normal_z); + vtx->energy=0.0; + return TS_SUCCESS; +} + +ts_bool sweep_attraction_bond_energy(ts_vesicle *vesicle){ + int i; + for(i=0;i<vesicle->blist->n;i++){ + attraction_bond_energy(vesicle->blist->bond[i], vesicle->tape->w); + } + return TS_SUCCESS; +} + + +inline ts_bool attraction_bond_energy(ts_bond *bond, ts_double w){ + + if(fabs(bond->vtx1->c)>1e-16 && fabs(bond->vtx2->c)>1e-16){ + bond->energy=-w; + } + else { + bond->energy=0.0; + } + return TS_SUCCESS; +} + +ts_double direct_force_energy(ts_vesicle *vesicle, ts_vertex *vtx, ts_vertex *vtx_old){ + if(fabs(vtx->c)<1e-15) return 0.0; +// printf("was here"); + if(fabs(vesicle->tape->F)<1e-15) return 0.0; + + ts_double norml,ddp=0.0; + ts_uint i; + ts_double xnorm=0.0,ynorm=0.0,znorm=0.0; + /*find normal of the vertex as sum of all the normals of the triangles surrounding it. */ + for(i=0;i<vtx->tristar_no;i++){ + xnorm+=vtx->tristar[i]->xnorm; + ynorm+=vtx->tristar[i]->ynorm; + znorm+=vtx->tristar[i]->znorm; + } + /*normalize*/ + norml=sqrt(xnorm*xnorm+ynorm*ynorm+znorm*znorm); + xnorm/=norml; + ynorm/=norml; + znorm/=norml; + /*calculate ddp, perpendicular displacement*/ + ddp=xnorm*(vtx->x-vtx_old->x)+ynorm*(vtx->y-vtx_old->y)+znorm*(vtx->z-vtx_old->z); + /*calculate dE*/ +// printf("ddp=%e",ddp); + return vesicle->tape->F*ddp; + +} + +void stretchenergy(ts_vesicle *vesicle, ts_triangle *triangle){ + triangle->energy=vesicle->tape->xkA0/2.0*pow((triangle->area/vesicle->tlist->a0-1.0),2); } -- Gitblit v1.9.3