From 608cbe1dd70feed73f702459c52876bf62f276b7 Mon Sep 17 00:00:00 2001
From: Samo Penic <samo.penic@gmail.com>
Date: Mon, 06 Jul 2020 07:44:11 +0000
Subject: [PATCH] Triangles are in right order.

---
 src/energy.c |  206 ++++++++++++++++++++++++++------------------------
 1 files changed, 107 insertions(+), 99 deletions(-)

diff --git a/src/energy.c b/src/energy.c
index 4d27995..1f2bd1c 100644
--- a/src/energy.c
+++ b/src/energy.c
@@ -3,6 +3,7 @@
 #include "general.h"
 #include "energy.h"
 #include "vertex.h"
+#include "bond.h"
 #include<math.h>
 #include<stdio.h>
 
@@ -87,110 +88,113 @@
  * @returns TS_SUCCESS on successful calculation.
 */
 inline ts_bool energy_vertex(ts_vertex *vtx){
-    ts_uint jj;
-    ts_uint jjp,jjm;
-    ts_vertex *j,*jp, *jm;
-    ts_triangle *jt;
-    ts_double s=0.0,xh=0.0,yh=0.0,zh=0.0,txn=0.0,tyn=0.0,tzn=0.0;
-    ts_double x1,x2,x3,ctp,ctm,tot,xlen;
-    ts_double h,ht;
-    for(jj=1; jj<=vtx->neigh_no;jj++){
-        jjp=jj+1;
-        if(jjp>vtx->neigh_no) jjp=1;
-        jjm=jj-1;
-        if(jjm<1) jjm=vtx->neigh_no;
-        j=vtx->neigh[jj-1];
-        jp=vtx->neigh[jjp-1];
-        jm=vtx->neigh[jjm-1];
-        jt=vtx->tristar[jj-1];
-        x1=vtx_distance_sq(vtx,jp); //shouldn't be zero!
-        x2=vtx_distance_sq(j,jp); // shouldn't be zero!
-        x3=(j->x-jp->x)*(vtx->x-jp->x)+
-           (j->y-jp->y)*(vtx->y-jp->y)+
-           (j->z-jp->z)*(vtx->z-jp->z);
-        
-#ifdef TS_DOUBLE_DOUBLE
-        ctp=x3/sqrt(x1*x2-x3*x3);
-#endif
-#ifdef TS_DOUBLE_FLOAT
-        ctp=x3/sqrtf(x1*x2-x3*x3);
-#endif
-#ifdef TS_DOUBLE_LONGDOUBLE
-        ctp=x3/sqrtl(x1*x2-x3*x3);
-#endif
-        x1=vtx_distance_sq(vtx,jm);
-        x2=vtx_distance_sq(j,jm);
-        x3=(j->x-jm->x)*(vtx->x-jm->x)+
-           (j->y-jm->y)*(vtx->y-jm->y)+
-           (j->z-jm->z)*(vtx->z-jm->z);
-#ifdef TS_DOUBLE_DOUBLE
-        ctm=x3/sqrt(x1*x2-x3*x3);
-#endif
-#ifdef TS_DOUBLE_FLOAT
-        ctm=x3/sqrtf(x1*x2-x3*x3);
-#endif
-#ifdef TS_DOUBLE_LONGDOUBLE
-        ctm=x3/sqrtl(x1*x2-x3*x3);
-#endif
-        tot=ctp+ctm;
-        tot=0.5*tot;
+    ts_uint jj, i, j;
+    ts_double edge_vector_x[7]={0,0,0,0,0,0,0};
+    ts_double edge_vector_y[7]={0,0,0,0,0,0,0};
+    ts_double edge_vector_z[7]={0,0,0,0,0,0,0};
+    ts_double edge_normal_x[7]={0,0,0,0,0,0,0};
+    ts_double edge_normal_y[7]={0,0,0,0,0,0,0};
+    ts_double edge_normal_z[7]={0,0,0,0,0,0,0};
+    ts_double edge_binormal_x[7]={0,0,0,0,0,0,0};
+    ts_double edge_binormal_y[7]={0,0,0,0,0,0,0};
+    ts_double edge_binormal_z[7]={0,0,0,0,0,0,0};
+    ts_double vertex_normal_x=0.0;
+    ts_double vertex_normal_y=0.0;
+    ts_double vertex_normal_z=0.0;
+//    ts_triangle *triedge[2]={NULL,NULL};
 
-        xlen=vtx_distance_sq(j,vtx);
+    ts_uint nei,neip,neim;
+    ts_vertex *it, *k, *kp,*km;
+    ts_triangle *lm=NULL, *lp=NULL;
+    ts_double sumnorm;
+
+    // Here edge vector is calculated
+//    fprintf(stderr, "Vertex has neighbours=%d\n", vtx->neigh_no);
+    for(jj=0;jj<vtx->neigh_no;jj++){
+	edge_vector_x[jj]=vtx->neigh[jj]->x-vtx->x;
+	edge_vector_y[jj]=vtx->neigh[jj]->y-vtx->y;
+	edge_vector_z[jj]=vtx->neigh[jj]->z-vtx->z;
+
+
+	it=vtx;
+	k=vtx->neigh[jj];
+	nei=0;
+    	for(i=0;i<it->neigh_no;i++){ // Finds the nn of it, that is k 
+        	if(it->neigh[i]==k){
+            	nei=i;
+            	break;
+        	}
+    	}
+    	neip=nei+1;  // I don't like it.. Smells like I must have it in correct order
+    	neim=nei-1;
+    	if(neip>=it->neigh_no) neip=0;
+    	if((ts_int)neim<0) neim=it->neigh_no-1; /* casting is essential... If not
+there the neim is never <0 !!! */
+  //  fprintf(stderr,"The numbers are: %u %u\n",neip, neim);
+    	km=it->neigh[neim];  // We located km and kp
+    	kp=it->neigh[neip];
+
+    	if(km==NULL || kp==NULL){
+        	fatal("In bondflip, cannot determine km and kp!",999);
+    	}
+
+   for(i=0;i<it->tristar_no;i++){
+        for(j=0;j<k->tristar_no;j++){
+            if((it->tristar[i] == k->tristar[j])){ //ce gre za skupen trikotnik
+                if((it->tristar[i]->vertex[0] == km || it->tristar[i]->vertex[1]
+== km || it->tristar[i]->vertex[2]== km )){
+                lm=it->tristar[i];
+         //       lmidx=i;
+                }
+                else
+                {
+                lp=it->tristar[i];
+         //       lpidx=i;
+                }
+
+            }
+        }
+    }
+if(lm==NULL || lp==NULL) fatal("ts_flip_bond: Cannot find triangles lm and lp!",999);
+
+
 /*
-#ifdef  TS_DOUBLE_DOUBLE 
-        vtx->bond[jj-1]->bond_length=sqrt(xlen); 
-#endif
-#ifdef  TS_DOUBLE_FLOAT
-        vtx->bond[jj-1]->bond_length=sqrtf(xlen); 
-#endif
-#ifdef  TS_DOUBLE_LONGDOUBLE 
-        vtx->bond[jj-1]->bond_length=sqrtl(xlen); 
-#endif
-
-        vtx->bond[jj-1]->bond_length_dual=tot*vtx->bond[jj-1]->bond_length;
+	// We find lm and lp from k->tristar !
+	cnt=0;
+    	for(i=0;i<vtx->tristar_no;i++){
+        	for(j=0;j<vtx->neigh[jj]->tristar_no;j++){
+            		if((vtx->tristar[i] == vtx->neigh[jj]->tristar[j])){ //ce gre za skupen trikotnik
+                		triedge[cnt]=vtx->tristar[i];
+				cnt++;
+            		}
+        	}
+    	}
+	if(cnt!=2) fatal("ts_energy_vertex: both triangles not found!", 133);
 */
-        s+=tot*xlen;
-        xh+=tot*(j->x - vtx->x);
-        yh+=tot*(j->y - vtx->y);
-        zh+=tot*(j->z - vtx->z);
-        txn+=jt->xnorm;
-        tyn+=jt->ynorm;
-        tzn+=jt->znorm;
-    }
-    
-    h=xh*xh+yh*yh+zh*zh;
-    ht=txn*xh+tyn*yh + tzn*zh;
-    s=s/4.0; 
-#ifdef TS_DOUBLE_DOUBLE
-    if(ht>=0.0) {
-        vtx->curvature=sqrt(h);
-    } else {
-        vtx->curvature=-sqrt(h);
-    }
-#endif
-#ifdef TS_DOUBLE_FLOAT
-    if(ht>=0.0) {
-        vtx->curvature=sqrtf(h);
-    } else {
-        vtx->curvature=-sqrtf(h);
-    }
-#endif
-#ifdef TS_DOUBLE_LONGDOUBLE
-    if(ht>=0.0) {
-        vtx->curvature=sqrtl(h);
-    } else {
-        vtx->curvature=-sqrtl(h);
-    }
-#endif
-// c is forced curvature energy for each vertex. Should be set to zero for
-// normal circumstances.
-/* the following statement is an expression for $\frac{1}{2}\int(c_1+c_2-c_0^\prime)^2\mathrm{d}A$, where $c_0^\prime=2c_0$ (twice the spontaneous curvature)  */
-    vtx->energy=0.5*s*(vtx->curvature/s-vtx->c)*(vtx->curvature/s-vtx->c);
 
-    return TS_SUCCESS;
+	sumnorm=sqrt( pow((lm->xnorm + lp->xnorm),2) + pow((lm->ynorm + lp->ynorm), 2) + pow((lm->znorm + lp->znorm), 2));
+
+	edge_normal_x[jj]=(lm->xnorm+ lp->xnorm)/sumnorm;
+	edge_normal_y[jj]=(lm->ynorm+ lp->ynorm)/sumnorm;
+	edge_normal_z[jj]=(lm->znorm+ lp->znorm)/sumnorm;
+
+
+	edge_binormal_x[jj]=(edge_normal_y[jj]*edge_vector_z[jj])-(edge_normal_z[jj]*edge_vector_y[jj]);
+	edge_binormal_y[jj]=-(edge_normal_x[jj]*edge_vector_z[jj])+(edge_normal_z[jj]*edge_vector_x[jj]);
+	edge_binormal_z[jj]=(edge_normal_x[jj]*edge_vector_y[jj])-(edge_normal_y[jj]*edge_vector_x[jj]);
+
+	printf("(%f %f %f); (%f %f %f); (%f %f %f)\n", edge_vector_x[jj], edge_vector_y[jj], edge_vector_z[jj], edge_normal_x[jj], edge_normal_y[jj], edge_normal_z[jj], edge_binormal_x[jj], edge_binormal_y[jj], edge_binormal_z[jj]);
+
+    }
+	for(i=0; i<vtx->tristar_no; i++){
+		vertex_normal_x=vertex_normal_x + vtx->tristar[i]->xnorm*vtx->tristar[i]->area;
+		vertex_normal_y=vertex_normal_y + vtx->tristar[i]->ynorm*vtx->tristar[i]->area;
+		vertex_normal_z=vertex_normal_z + vtx->tristar[i]->znorm*vtx->tristar[i]->area;
+	}
+	printf("(%f %f %f)\n", vertex_normal_x, vertex_normal_y, vertex_normal_z);
+	vtx->energy=0.0;
+	return TS_SUCCESS;
 }
-
-
 
 ts_bool sweep_attraction_bond_energy(ts_vesicle *vesicle){
 	int i;
@@ -238,3 +242,7 @@
 	return vesicle->tape->F*ddp;		
 	
 }
+
+void stretchenergy(ts_vesicle *vesicle, ts_triangle *triangle){
+	triangle->energy=vesicle->tape->xkA0/2.0*pow((triangle->area/vesicle->tlist->a0-1.0),2);
+}

--
Gitblit v1.9.3