From 608cbe1dd70feed73f702459c52876bf62f276b7 Mon Sep 17 00:00:00 2001 From: Samo Penic <samo.penic@gmail.com> Date: Mon, 06 Jul 2020 07:44:11 +0000 Subject: [PATCH] Triangles are in right order. --- src/energy.c | 212 ++++++++++++++++++++++++++++------------------------- 1 files changed, 112 insertions(+), 100 deletions(-) diff --git a/src/energy.c b/src/energy.c index 996fb16..1f2bd1c 100644 --- a/src/energy.c +++ b/src/energy.c @@ -3,6 +3,7 @@ #include "general.h" #include "energy.h" #include "vertex.h" +#include "bond.h" #include<math.h> #include<stdio.h> @@ -44,9 +45,12 @@ return TS_SUCCESS; }; -/** @brief Calculation of energy of the vertex +/** @brief Calculation of the bending energy of the vertex. * - * Main function that calculates energy of the vertex \f$i\f$. Nearest neighbors (NN) must be ordered in counterclockwise direction for this function to work. + * Main function that calculates energy of the vertex \f$i\f$. Function returns \f$\frac{1}{2}(c_1+c_2-c)^2 s\f$, where \f$(c_1+c_2)/2\f$ is mean curvature, + * \f$c/2\f$ is spontaneous curvature and \f$s\f$ is area per vertex \f$i\f$. + * + * Nearest neighbors (NN) must be ordered in counterclockwise direction for this function to work. * Firstly NNs that form two neighboring triangles are found (\f$j_m\f$, \f$j_p\f$ and common \f$j\f$). Later, the scalar product of vectors \f$x_1=(\mathbf{i}-\mathbf{j_p})\cdot (\mathbf{i}-\mathbf{j_p})(\mathbf{i}-\mathbf{j_p})\f$, \f$x_2=(\mathbf{j}-\mathbf{j_p})\cdot (\mathbf{j}-\mathbf{j_p})\f$ and \f$x_3=(\mathbf{j}-\mathbf{j_p})\cdot (\mathbf{i}-\mathbf{j_p})\f$ are calculated. From these three vectors the \f$c_{tp}=\frac{1}{\tan(\varphi_p)}\f$ is calculated, where \f$\varphi_p\f$ is the inner angle at vertex \f$j_p\f$. The procedure is repeated for \f$j_m\f$ instead of \f$j_p\f$ resulting in \f$c_{tn}\f$. * \begin{tikzpicture}{ @@ -84,109 +88,113 @@ * @returns TS_SUCCESS on successful calculation. */ inline ts_bool energy_vertex(ts_vertex *vtx){ - ts_uint jj; - ts_uint jjp,jjm; - ts_vertex *j,*jp, *jm; - ts_triangle *jt; - ts_double s=0.0,xh=0.0,yh=0.0,zh=0.0,txn=0.0,tyn=0.0,tzn=0.0; - ts_double x1,x2,x3,ctp,ctm,tot,xlen; - ts_double h,ht; - for(jj=1; jj<=vtx->neigh_no;jj++){ - jjp=jj+1; - if(jjp>vtx->neigh_no) jjp=1; - jjm=jj-1; - if(jjm<1) jjm=vtx->neigh_no; - j=vtx->neigh[jj-1]; - jp=vtx->neigh[jjp-1]; - jm=vtx->neigh[jjm-1]; - jt=vtx->tristar[jj-1]; - x1=vtx_distance_sq(vtx,jp); //shouldn't be zero! - x2=vtx_distance_sq(j,jp); // shouldn't be zero! - x3=(j->x-jp->x)*(vtx->x-jp->x)+ - (j->y-jp->y)*(vtx->y-jp->y)+ - (j->z-jp->z)*(vtx->z-jp->z); - -#ifdef TS_DOUBLE_DOUBLE - ctp=x3/sqrt(x1*x2-x3*x3); -#endif -#ifdef TS_DOUBLE_FLOAT - ctp=x3/sqrtf(x1*x2-x3*x3); -#endif -#ifdef TS_DOUBLE_LONGDOUBLE - ctp=x3/sqrtl(x1*x2-x3*x3); -#endif - x1=vtx_distance_sq(vtx,jm); - x2=vtx_distance_sq(j,jm); - x3=(j->x-jm->x)*(vtx->x-jm->x)+ - (j->y-jm->y)*(vtx->y-jm->y)+ - (j->z-jm->z)*(vtx->z-jm->z); -#ifdef TS_DOUBLE_DOUBLE - ctm=x3/sqrt(x1*x2-x3*x3); -#endif -#ifdef TS_DOUBLE_FLOAT - ctm=x3/sqrtf(x1*x2-x3*x3); -#endif -#ifdef TS_DOUBLE_LONGDOUBLE - ctm=x3/sqrtl(x1*x2-x3*x3); -#endif - tot=ctp+ctm; - tot=0.5*tot; + ts_uint jj, i, j; + ts_double edge_vector_x[7]={0,0,0,0,0,0,0}; + ts_double edge_vector_y[7]={0,0,0,0,0,0,0}; + ts_double edge_vector_z[7]={0,0,0,0,0,0,0}; + ts_double edge_normal_x[7]={0,0,0,0,0,0,0}; + ts_double edge_normal_y[7]={0,0,0,0,0,0,0}; + ts_double edge_normal_z[7]={0,0,0,0,0,0,0}; + ts_double edge_binormal_x[7]={0,0,0,0,0,0,0}; + ts_double edge_binormal_y[7]={0,0,0,0,0,0,0}; + ts_double edge_binormal_z[7]={0,0,0,0,0,0,0}; + ts_double vertex_normal_x=0.0; + ts_double vertex_normal_y=0.0; + ts_double vertex_normal_z=0.0; +// ts_triangle *triedge[2]={NULL,NULL}; - xlen=vtx_distance_sq(j,vtx); + ts_uint nei,neip,neim; + ts_vertex *it, *k, *kp,*km; + ts_triangle *lm=NULL, *lp=NULL; + ts_double sumnorm; + + // Here edge vector is calculated +// fprintf(stderr, "Vertex has neighbours=%d\n", vtx->neigh_no); + for(jj=0;jj<vtx->neigh_no;jj++){ + edge_vector_x[jj]=vtx->neigh[jj]->x-vtx->x; + edge_vector_y[jj]=vtx->neigh[jj]->y-vtx->y; + edge_vector_z[jj]=vtx->neigh[jj]->z-vtx->z; + + + it=vtx; + k=vtx->neigh[jj]; + nei=0; + for(i=0;i<it->neigh_no;i++){ // Finds the nn of it, that is k + if(it->neigh[i]==k){ + nei=i; + break; + } + } + neip=nei+1; // I don't like it.. Smells like I must have it in correct order + neim=nei-1; + if(neip>=it->neigh_no) neip=0; + if((ts_int)neim<0) neim=it->neigh_no-1; /* casting is essential... If not +there the neim is never <0 !!! */ + // fprintf(stderr,"The numbers are: %u %u\n",neip, neim); + km=it->neigh[neim]; // We located km and kp + kp=it->neigh[neip]; + + if(km==NULL || kp==NULL){ + fatal("In bondflip, cannot determine km and kp!",999); + } + + for(i=0;i<it->tristar_no;i++){ + for(j=0;j<k->tristar_no;j++){ + if((it->tristar[i] == k->tristar[j])){ //ce gre za skupen trikotnik + if((it->tristar[i]->vertex[0] == km || it->tristar[i]->vertex[1] +== km || it->tristar[i]->vertex[2]== km )){ + lm=it->tristar[i]; + // lmidx=i; + } + else + { + lp=it->tristar[i]; + // lpidx=i; + } + + } + } + } +if(lm==NULL || lp==NULL) fatal("ts_flip_bond: Cannot find triangles lm and lp!",999); + + /* -#ifdef TS_DOUBLE_DOUBLE - vtx->bond[jj-1]->bond_length=sqrt(xlen); -#endif -#ifdef TS_DOUBLE_FLOAT - vtx->bond[jj-1]->bond_length=sqrtf(xlen); -#endif -#ifdef TS_DOUBLE_LONGDOUBLE - vtx->bond[jj-1]->bond_length=sqrtl(xlen); -#endif - - vtx->bond[jj-1]->bond_length_dual=tot*vtx->bond[jj-1]->bond_length; + // We find lm and lp from k->tristar ! + cnt=0; + for(i=0;i<vtx->tristar_no;i++){ + for(j=0;j<vtx->neigh[jj]->tristar_no;j++){ + if((vtx->tristar[i] == vtx->neigh[jj]->tristar[j])){ //ce gre za skupen trikotnik + triedge[cnt]=vtx->tristar[i]; + cnt++; + } + } + } + if(cnt!=2) fatal("ts_energy_vertex: both triangles not found!", 133); */ - s+=tot*xlen; - xh+=tot*(j->x - vtx->x); - yh+=tot*(j->y - vtx->y); - zh+=tot*(j->z - vtx->z); - txn+=jt->xnorm; - tyn+=jt->ynorm; - tzn+=jt->znorm; - } - - h=xh*xh+yh*yh+zh*zh; - ht=txn*xh+tyn*yh + tzn*zh; - s=s/4.0; -#ifdef TS_DOUBLE_DOUBLE - if(ht>=0.0) { - vtx->curvature=sqrt(h); - } else { - vtx->curvature=-sqrt(h); - } -#endif -#ifdef TS_DOUBLE_FLOAT - if(ht>=0.0) { - vtx->curvature=sqrtf(h); - } else { - vtx->curvature=-sqrtf(h); - } -#endif -#ifdef TS_DOUBLE_LONGDOUBLE - if(ht>=0.0) { - vtx->curvature=sqrtl(h); - } else { - vtx->curvature=-sqrtl(h); - } -#endif -// c is forced curvature energy for each vertex. Should be set to zero for -// normal circumstances. - vtx->energy=0.5*s*(vtx->curvature/s-vtx->c)*(vtx->curvature/s-vtx->c); - return TS_SUCCESS; + sumnorm=sqrt( pow((lm->xnorm + lp->xnorm),2) + pow((lm->ynorm + lp->ynorm), 2) + pow((lm->znorm + lp->znorm), 2)); + + edge_normal_x[jj]=(lm->xnorm+ lp->xnorm)/sumnorm; + edge_normal_y[jj]=(lm->ynorm+ lp->ynorm)/sumnorm; + edge_normal_z[jj]=(lm->znorm+ lp->znorm)/sumnorm; + + + edge_binormal_x[jj]=(edge_normal_y[jj]*edge_vector_z[jj])-(edge_normal_z[jj]*edge_vector_y[jj]); + edge_binormal_y[jj]=-(edge_normal_x[jj]*edge_vector_z[jj])+(edge_normal_z[jj]*edge_vector_x[jj]); + edge_binormal_z[jj]=(edge_normal_x[jj]*edge_vector_y[jj])-(edge_normal_y[jj]*edge_vector_x[jj]); + + printf("(%f %f %f); (%f %f %f); (%f %f %f)\n", edge_vector_x[jj], edge_vector_y[jj], edge_vector_z[jj], edge_normal_x[jj], edge_normal_y[jj], edge_normal_z[jj], edge_binormal_x[jj], edge_binormal_y[jj], edge_binormal_z[jj]); + + } + for(i=0; i<vtx->tristar_no; i++){ + vertex_normal_x=vertex_normal_x + vtx->tristar[i]->xnorm*vtx->tristar[i]->area; + vertex_normal_y=vertex_normal_y + vtx->tristar[i]->ynorm*vtx->tristar[i]->area; + vertex_normal_z=vertex_normal_z + vtx->tristar[i]->znorm*vtx->tristar[i]->area; + } + printf("(%f %f %f)\n", vertex_normal_x, vertex_normal_y, vertex_normal_z); + vtx->energy=0.0; + return TS_SUCCESS; } - - ts_bool sweep_attraction_bond_energy(ts_vesicle *vesicle){ int i; @@ -234,3 +242,7 @@ return vesicle->tape->F*ddp; } + +void stretchenergy(ts_vesicle *vesicle, ts_triangle *triangle){ + triangle->energy=vesicle->tape->xkA0/2.0*pow((triangle->area/vesicle->tlist->a0-1.0),2); +} -- Gitblit v1.9.3