From 0dd5baa7166ab9abd7ef2d6b374e72beab03ef2a Mon Sep 17 00:00:00 2001 From: Samo Penic <samo.penic@gmail.com> Date: Tue, 11 Dec 2018 10:58:51 +0000 Subject: [PATCH] First test successful --- src/energy.c | 8 ++++++-- 1 files changed, 6 insertions(+), 2 deletions(-) diff --git a/src/energy.c b/src/energy.c index 996fb16..4d27995 100644 --- a/src/energy.c +++ b/src/energy.c @@ -44,9 +44,12 @@ return TS_SUCCESS; }; -/** @brief Calculation of energy of the vertex +/** @brief Calculation of the bending energy of the vertex. * - * Main function that calculates energy of the vertex \f$i\f$. Nearest neighbors (NN) must be ordered in counterclockwise direction for this function to work. + * Main function that calculates energy of the vertex \f$i\f$. Function returns \f$\frac{1}{2}(c_1+c_2-c)^2 s\f$, where \f$(c_1+c_2)/2\f$ is mean curvature, + * \f$c/2\f$ is spontaneous curvature and \f$s\f$ is area per vertex \f$i\f$. + * + * Nearest neighbors (NN) must be ordered in counterclockwise direction for this function to work. * Firstly NNs that form two neighboring triangles are found (\f$j_m\f$, \f$j_p\f$ and common \f$j\f$). Later, the scalar product of vectors \f$x_1=(\mathbf{i}-\mathbf{j_p})\cdot (\mathbf{i}-\mathbf{j_p})(\mathbf{i}-\mathbf{j_p})\f$, \f$x_2=(\mathbf{j}-\mathbf{j_p})\cdot (\mathbf{j}-\mathbf{j_p})\f$ and \f$x_3=(\mathbf{j}-\mathbf{j_p})\cdot (\mathbf{i}-\mathbf{j_p})\f$ are calculated. From these three vectors the \f$c_{tp}=\frac{1}{\tan(\varphi_p)}\f$ is calculated, where \f$\varphi_p\f$ is the inner angle at vertex \f$j_p\f$. The procedure is repeated for \f$j_m\f$ instead of \f$j_p\f$ resulting in \f$c_{tn}\f$. * \begin{tikzpicture}{ @@ -181,6 +184,7 @@ #endif // c is forced curvature energy for each vertex. Should be set to zero for // normal circumstances. +/* the following statement is an expression for $\frac{1}{2}\int(c_1+c_2-c_0^\prime)^2\mathrm{d}A$, where $c_0^\prime=2c_0$ (twice the spontaneous curvature) */ vtx->energy=0.5*s*(vtx->curvature/s-vtx->c)*(vtx->curvature/s-vtx->c); return TS_SUCCESS; -- Gitblit v1.9.3