From ac766ed5ec375a384da5c454103aef055aa9344a Mon Sep 17 00:00:00 2001 From: Samo Penic <samo.penic@gmail.com> Date: Fri, 16 Nov 2018 20:41:33 +0000 Subject: [PATCH] recognition is a bit more robust.... --- sid_process.py | 101 +++++++++++++++++++++++++++++++++++--------------- 1 files changed, 71 insertions(+), 30 deletions(-) diff --git a/sid_process.py b/sid_process.py index 90d9b33..48326c0 100644 --- a/sid_process.py +++ b/sid_process.py @@ -1,9 +1,8 @@ import cv2 import numpy as np -from skimage import morphology,img_as_ubyte +from skimage import morphology, img_as_ubyte from sklearn import svm from sklearn.externals import joblib - """ @@ -61,48 +60,90 @@ return np.ones((x, y), np.uint8) -def getSID(image, classifier): - image=255-image - image=img_as_ubyte(image>100) +def segment_by_contours(image, sorted_ctrs, classifier): + sid_no = "" + for i, ctr in enumerate(sorted_ctrs): + # Get bounding box + x, y, w, h = cv2.boundingRect(ctr) + # Getting ROI + if w < h / 2: + sid_no = sid_no + "1" + continue + roi = image[y : y + h, x : x + w] + roi = img_as_ubyte(roi < 128) + roi = cv2.resize(roi, (32, 32)) + + # cv2.rectangle(image,(x,y),( x + w, y + h ),(0,255,0),2) + cv2.imwrite("sid_no_{}.png".format(i), roi) + sid_no = sid_no + str(classifier.predict(roi.reshape(1, -1) / 255.0)[0]) + return sid_no + + +def segment_by_sid_len(image,sid_len, classifier): + sid_no="" + #find biggest block of pixels + + image1=cv2.morphologyEx(image,cv2.MORPH_DILATE, kernel(5,25), iterations=3) + cv2.imwrite("sidblock1.png",image1) + im2, ctrs, hier = cv2.findContours( + image1.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE + ) + sorted_ctrs = sorted(ctrs, key=lambda ctr: cv2.contourArea(ctr)) #get bigges contour + x, y, w, h = cv2.boundingRect(sorted_ctrs[-1]) + image=image[y:y+h,x+25:x+w-25] + cv2.imwrite("sidblock2.png",image) + imgHeight, imgWidth = image.shape[0:2] + numWidth=int(imgWidth/(sid_len)) + for i in range(0,sid_len): + num=image[:,i*numWidth:(i+1)*numWidth] + num = img_as_ubyte(num < 128) + num = cv2.resize(num, (32, 32)) + + # cv2.rectangle(image,(x,y),( x + w, y + h ),(0,255,0),2) + cv2.imwrite("sid_no_{}.png".format(i), num) + sid_no = sid_no + str(classifier.predict(num.reshape(1, -1) / 255.0)[0]) + return sid_no + + +def getSID(image, classifier, sid_mask): + image = 255 - image + image = img_as_ubyte(image > 100) cv2.imwrite("enSID0.png", image) # Remove noise - image = cv2.morphologyEx(image, cv2.MORPH_OPEN, kernel(2,2), iterations=1) + image = cv2.morphologyEx(image, cv2.MORPH_OPEN, kernel(2, 2), iterations=1) # Closing. Connect non connected parts image = cv2.morphologyEx(image, cv2.MORPH_CLOSE, kernel(5, 3), iterations=4) # Again noise removal after closing - image = cv2.morphologyEx(image, cv2.MORPH_OPEN, kernel(8,8), iterations=1) + #image = cv2.morphologyEx(image, cv2.MORPH_OPEN, kernel(8, 8), iterations=1) + image = cv2.morphologyEx(image, cv2.MORPH_OPEN, kernel(3, 3), iterations=1) + # Skeletonization - image = img_as_ubyte(morphology.thin(image>128)) - cv2.imwrite("enSID1.png",image) + image = img_as_ubyte(morphology.thin(image > 128)) + cv2.imwrite("enSID1.png", image) # Stub removal (might not be necessary if thinning instead of skeletonize is used above # Making lines stronger image = cv2.morphologyEx(image, cv2.MORPH_DILATE, kernel(5, 5), iterations=1) image = cv2.morphologyEx(image, cv2.MORPH_CLOSE, kernel(10, 10)) # Thining again - image = img_as_ubyte(morphology.skeletonize(image>0.5)) + image = img_as_ubyte(morphology.skeletonize(image > 0.5)) image = cv2.morphologyEx(image, cv2.MORPH_DILATE, kernel(10, 10)) - - im2,ctrs, hier = cv2.findContours(image.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) + cv2.imwrite("enhancedSID.png",image) + im2, ctrs, hier = cv2.findContours( + image.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE + ) sorted_ctrs = sorted(ctrs, key=lambda ctr: cv2.boundingRect(ctr)[0]) - #classifier = joblib.load('filename.joblib') - - sid_no="" - for i, ctr in enumerate(sorted_ctrs): - # Get bounding box - x, y, w, h = cv2.boundingRect(ctr) - # Getting ROI - if(w<h/2): - sid_no=sid_no+"1" - continue - roi = image[y:y+h, x:x+w] - roi = img_as_ubyte(roi < 128) - roi = cv2.resize(roi,(32,32)) - - #cv2.rectangle(image,(x,y),( x + w, y + h ),(0,255,0),2) - cv2.imwrite('sid_no_{}.png'.format(i), roi) - sid_no=sid_no+str(classifier.predict(roi.reshape(1,-1)/255.0)[0]) + sid_no = "" + #sid_len = len(sid_mask) + #sid_no = segment_by_sid_len(image, sid_len, classifier) + #if sid_mask is not None: + print(len(sid_mask),len(sorted_ctrs)) + #if len(sid_mask)==len(sorted_ctrs): + sid_no=segment_by_contours(image,sorted_ctrs[1:],classifier) print(sid_no) - return image + if(len(sid_no)!=len(sid_mask)): + print("Ooops have to find another way") + sid_no=segment_by_sid_len(image,len(sid_mask),classifier) + return sid_no -- Gitblit v1.9.3