From ac766ed5ec375a384da5c454103aef055aa9344a Mon Sep 17 00:00:00 2001
From: Samo Penic <samo.penic@gmail.com>
Date: Fri, 16 Nov 2018 20:41:33 +0000
Subject: [PATCH] recognition is a bit more robust....

---
 sid_process.py |  101 +++++++++++++++++++++++++++++++++++---------------
 1 files changed, 71 insertions(+), 30 deletions(-)

diff --git a/sid_process.py b/sid_process.py
index 90d9b33..48326c0 100644
--- a/sid_process.py
+++ b/sid_process.py
@@ -1,9 +1,8 @@
 import cv2
 import numpy as np
-from skimage import morphology,img_as_ubyte
+from skimage import morphology, img_as_ubyte
 from sklearn import svm
 from sklearn.externals import joblib
-
 
 
 """
@@ -61,48 +60,90 @@
     return np.ones((x, y), np.uint8)
 
 
-def getSID(image, classifier):
-    image=255-image
-    image=img_as_ubyte(image>100)
+def segment_by_contours(image, sorted_ctrs, classifier):
+    sid_no = ""
+    for i, ctr in enumerate(sorted_ctrs):
+        # Get bounding box
+        x, y, w, h = cv2.boundingRect(ctr)
+        # Getting ROI
+        if w < h / 2:
+            sid_no = sid_no + "1"
+            continue
+        roi = image[y : y + h, x : x + w]
+        roi = img_as_ubyte(roi < 128)
+        roi = cv2.resize(roi, (32, 32))
+
+        # cv2.rectangle(image,(x,y),( x + w, y + h ),(0,255,0),2)
+        cv2.imwrite("sid_no_{}.png".format(i), roi)
+        sid_no = sid_no + str(classifier.predict(roi.reshape(1, -1) / 255.0)[0])
+    return sid_no
+
+
+def segment_by_sid_len(image,sid_len, classifier):
+    sid_no=""
+    #find biggest block of pixels
+
+    image1=cv2.morphologyEx(image,cv2.MORPH_DILATE, kernel(5,25), iterations=3)
+    cv2.imwrite("sidblock1.png",image1)
+    im2, ctrs, hier = cv2.findContours(
+        image1.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE
+    )
+    sorted_ctrs = sorted(ctrs, key=lambda ctr: cv2.contourArea(ctr)) #get bigges contour
+    x, y, w, h = cv2.boundingRect(sorted_ctrs[-1])
+    image=image[y:y+h,x+25:x+w-25]
+    cv2.imwrite("sidblock2.png",image)
+    imgHeight, imgWidth = image.shape[0:2]
+    numWidth=int(imgWidth/(sid_len))
+    for i in range(0,sid_len):
+        num=image[:,i*numWidth:(i+1)*numWidth]
+        num = img_as_ubyte(num < 128)
+        num = cv2.resize(num, (32, 32))
+
+        # cv2.rectangle(image,(x,y),( x + w, y + h ),(0,255,0),2)
+        cv2.imwrite("sid_no_{}.png".format(i), num)
+        sid_no = sid_no + str(classifier.predict(num.reshape(1, -1) / 255.0)[0])
+    return sid_no
+
+
+def getSID(image, classifier, sid_mask):
+    image = 255 - image
+    image = img_as_ubyte(image > 100)
     cv2.imwrite("enSID0.png", image)
     # Remove noise
-    image = cv2.morphologyEx(image, cv2.MORPH_OPEN, kernel(2,2), iterations=1)
+    image = cv2.morphologyEx(image, cv2.MORPH_OPEN, kernel(2, 2), iterations=1)
     # Closing. Connect non connected parts
     image = cv2.morphologyEx(image, cv2.MORPH_CLOSE, kernel(5, 3), iterations=4)
     # Again noise removal after closing
 
-    image = cv2.morphologyEx(image, cv2.MORPH_OPEN, kernel(8,8), iterations=1)
+    #image = cv2.morphologyEx(image, cv2.MORPH_OPEN, kernel(8, 8), iterations=1)
+    image = cv2.morphologyEx(image, cv2.MORPH_OPEN, kernel(3, 3), iterations=1)
+
     # Skeletonization
-    image = img_as_ubyte(morphology.thin(image>128))
-    cv2.imwrite("enSID1.png",image)
+    image = img_as_ubyte(morphology.thin(image > 128))
+    cv2.imwrite("enSID1.png", image)
     # Stub removal (might not be necessary if thinning instead of skeletonize is used above
     # Making lines stronger
     image = cv2.morphologyEx(image, cv2.MORPH_DILATE, kernel(5, 5), iterations=1)
 
     image = cv2.morphologyEx(image, cv2.MORPH_CLOSE, kernel(10, 10))
     # Thining again
-    image = img_as_ubyte(morphology.skeletonize(image>0.5))
+    image = img_as_ubyte(morphology.skeletonize(image > 0.5))
     image = cv2.morphologyEx(image, cv2.MORPH_DILATE, kernel(10, 10))
-
-    im2,ctrs, hier = cv2.findContours(image.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
+    cv2.imwrite("enhancedSID.png",image)
+    im2, ctrs, hier = cv2.findContours(
+        image.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE
+    )
     sorted_ctrs = sorted(ctrs, key=lambda ctr: cv2.boundingRect(ctr)[0])
 
-    #classifier = joblib.load('filename.joblib')
-
-    sid_no=""
-    for i, ctr in enumerate(sorted_ctrs):
-        # Get bounding box
-        x, y, w, h = cv2.boundingRect(ctr)
-        # Getting ROI
-        if(w<h/2):
-            sid_no=sid_no+"1"
-            continue
-        roi = image[y:y+h, x:x+w]
-        roi = img_as_ubyte(roi < 128)
-        roi = cv2.resize(roi,(32,32))
-
-        #cv2.rectangle(image,(x,y),( x + w, y + h ),(0,255,0),2)
-        cv2.imwrite('sid_no_{}.png'.format(i), roi)
-        sid_no=sid_no+str(classifier.predict(roi.reshape(1,-1)/255.0)[0])
+    sid_no = ""
+    #sid_len = len(sid_mask)
+    #sid_no = segment_by_sid_len(image, sid_len, classifier)
+    #if sid_mask is not None:
+    print(len(sid_mask),len(sorted_ctrs))
+    #if len(sid_mask)==len(sorted_ctrs):
+    sid_no=segment_by_contours(image,sorted_ctrs[1:],classifier)
     print(sid_no)
-    return image
+    if(len(sid_no)!=len(sid_mask)):
+        print("Ooops have to find another way")
+        sid_no=segment_by_sid_len(image,len(sid_mask),classifier)
+    return sid_no

--
Gitblit v1.9.3