From ac766ed5ec375a384da5c454103aef055aa9344a Mon Sep 17 00:00:00 2001
From: Samo Penic <samo.penic@gmail.com>
Date: Fri, 16 Nov 2018 20:41:33 +0000
Subject: [PATCH] recognition is a bit more robust....

---
 aoiOcr.py      |    4 ++--
 sid_process.py |   47 +++++++++++++++++++++++++++++++++++++++--------
 2 files changed, 41 insertions(+), 10 deletions(-)

diff --git a/aoiOcr.py b/aoiOcr.py
index 74e4fdb..02eef68 100644
--- a/aoiOcr.py
+++ b/aoiOcr.py
@@ -6,8 +6,8 @@
 classifier = joblib.load("filename.joblib")
 
 #p = Paper(filename="testpage300dpi_scan1.png")
-p=Paper(filename='sizif111.tif', sid_classifier=classifier, settings=settings)
-# p=Paper(filename='processed_scans/20141016095134535_0028.tif')
+#p=Paper(filename='sizif111.tif', sid_classifier=classifier, settings=settings)
+p=Paper(filename='processed_scans/20141016095134535_0006.tif', sid_classifier=classifier, settings=settings)
 
 # print(p.QRData)
 # print(p.errors)
diff --git a/sid_process.py b/sid_process.py
index 67c689a..48326c0 100644
--- a/sid_process.py
+++ b/sid_process.py
@@ -79,6 +79,32 @@
     return sid_no
 
 
+def segment_by_sid_len(image,sid_len, classifier):
+    sid_no=""
+    #find biggest block of pixels
+
+    image1=cv2.morphologyEx(image,cv2.MORPH_DILATE, kernel(5,25), iterations=3)
+    cv2.imwrite("sidblock1.png",image1)
+    im2, ctrs, hier = cv2.findContours(
+        image1.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE
+    )
+    sorted_ctrs = sorted(ctrs, key=lambda ctr: cv2.contourArea(ctr)) #get bigges contour
+    x, y, w, h = cv2.boundingRect(sorted_ctrs[-1])
+    image=image[y:y+h,x+25:x+w-25]
+    cv2.imwrite("sidblock2.png",image)
+    imgHeight, imgWidth = image.shape[0:2]
+    numWidth=int(imgWidth/(sid_len))
+    for i in range(0,sid_len):
+        num=image[:,i*numWidth:(i+1)*numWidth]
+        num = img_as_ubyte(num < 128)
+        num = cv2.resize(num, (32, 32))
+
+        # cv2.rectangle(image,(x,y),( x + w, y + h ),(0,255,0),2)
+        cv2.imwrite("sid_no_{}.png".format(i), num)
+        sid_no = sid_no + str(classifier.predict(num.reshape(1, -1) / 255.0)[0])
+    return sid_no
+
+
 def getSID(image, classifier, sid_mask):
     image = 255 - image
     image = img_as_ubyte(image > 100)
@@ -89,7 +115,9 @@
     image = cv2.morphologyEx(image, cv2.MORPH_CLOSE, kernel(5, 3), iterations=4)
     # Again noise removal after closing
 
-    image = cv2.morphologyEx(image, cv2.MORPH_OPEN, kernel(8, 8), iterations=1)
+    #image = cv2.morphologyEx(image, cv2.MORPH_OPEN, kernel(8, 8), iterations=1)
+    image = cv2.morphologyEx(image, cv2.MORPH_OPEN, kernel(3, 3), iterations=1)
+
     # Skeletonization
     image = img_as_ubyte(morphology.thin(image > 128))
     cv2.imwrite("enSID1.png", image)
@@ -101,18 +129,21 @@
     # Thining again
     image = img_as_ubyte(morphology.skeletonize(image > 0.5))
     image = cv2.morphologyEx(image, cv2.MORPH_DILATE, kernel(10, 10))
-
+    cv2.imwrite("enhancedSID.png",image)
     im2, ctrs, hier = cv2.findContours(
         image.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE
     )
     sorted_ctrs = sorted(ctrs, key=lambda ctr: cv2.boundingRect(ctr)[0])
 
     sid_no = ""
-    sid_len = 0
-    if sid_mask is not None:
-        if len(sid_mask)==len(sorted_ctrs):
-            sid_no=segment_by_contours(image,sorted_ctrs,classifier)
-        else:
-            print("Ooops have to find another way")
+    #sid_len = len(sid_mask)
+    #sid_no = segment_by_sid_len(image, sid_len, classifier)
+    #if sid_mask is not None:
+    print(len(sid_mask),len(sorted_ctrs))
+    #if len(sid_mask)==len(sorted_ctrs):
+    sid_no=segment_by_contours(image,sorted_ctrs[1:],classifier)
     print(sid_no)
+    if(len(sid_no)!=len(sid_mask)):
+        print("Ooops have to find another way")
+        sid_no=segment_by_sid_len(image,len(sid_mask),classifier)
     return sid_no

--
Gitblit v1.9.3