From 0b5a8decb9cc2ba96d2aed1721e48bafb751e33c Mon Sep 17 00:00:00 2001 From: Samo Penic <samo.penic@gmail.com> Date: Fri, 16 Nov 2018 18:23:09 +0000 Subject: [PATCH] ups, forgot classifier object dump --- sid_process.py | 33 +++++++++++++++++++++++++++++---- 1 files changed, 29 insertions(+), 4 deletions(-) diff --git a/sid_process.py b/sid_process.py index 210cfe7..90d9b33 100644 --- a/sid_process.py +++ b/sid_process.py @@ -1,6 +1,10 @@ import cv2 import numpy as np from skimage import morphology,img_as_ubyte +from sklearn import svm +from sklearn.externals import joblib + + """ (1) The text is an array of chars (in row-major order) where @@ -57,19 +61,18 @@ return np.ones((x, y), np.uint8) -def enhanceSID(image): +def getSID(image, classifier): image=255-image image=img_as_ubyte(image>100) cv2.imwrite("enSID0.png", image) # Remove noise image = cv2.morphologyEx(image, cv2.MORPH_OPEN, kernel(2,2), iterations=1) # Closing. Connect non connected parts - image = cv2.morphologyEx(image, cv2.MORPH_CLOSE, kernel(5, 5), iterations=2) + image = cv2.morphologyEx(image, cv2.MORPH_CLOSE, kernel(5, 3), iterations=4) # Again noise removal after closing + image = cv2.morphologyEx(image, cv2.MORPH_OPEN, kernel(8,8), iterations=1) # Skeletonization - ##For thinning I am using erosion - ##image = cv2.erode(image,kernel(4,4),iterations = 40) image = img_as_ubyte(morphology.thin(image>128)) cv2.imwrite("enSID1.png",image) # Stub removal (might not be necessary if thinning instead of skeletonize is used above @@ -80,4 +83,26 @@ # Thining again image = img_as_ubyte(morphology.skeletonize(image>0.5)) image = cv2.morphologyEx(image, cv2.MORPH_DILATE, kernel(10, 10)) + + im2,ctrs, hier = cv2.findContours(image.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) + sorted_ctrs = sorted(ctrs, key=lambda ctr: cv2.boundingRect(ctr)[0]) + + #classifier = joblib.load('filename.joblib') + + sid_no="" + for i, ctr in enumerate(sorted_ctrs): + # Get bounding box + x, y, w, h = cv2.boundingRect(ctr) + # Getting ROI + if(w<h/2): + sid_no=sid_no+"1" + continue + roi = image[y:y+h, x:x+w] + roi = img_as_ubyte(roi < 128) + roi = cv2.resize(roi,(32,32)) + + #cv2.rectangle(image,(x,y),( x + w, y + h ),(0,255,0),2) + cv2.imwrite('sid_no_{}.png'.format(i), roi) + sid_no=sid_no+str(classifier.predict(roi.reshape(1,-1)/255.0)[0]) + print(sid_no) return image -- Gitblit v1.9.3