From 0b5a8decb9cc2ba96d2aed1721e48bafb751e33c Mon Sep 17 00:00:00 2001
From: Samo Penic <samo.penic@gmail.com>
Date: Fri, 16 Nov 2018 18:23:09 +0000
Subject: [PATCH] ups, forgot classifier object dump

---
 sid_process.py |   33 +++++++++++++++++++++++++++++----
 1 files changed, 29 insertions(+), 4 deletions(-)

diff --git a/sid_process.py b/sid_process.py
index 210cfe7..90d9b33 100644
--- a/sid_process.py
+++ b/sid_process.py
@@ -1,6 +1,10 @@
 import cv2
 import numpy as np
 from skimage import morphology,img_as_ubyte
+from sklearn import svm
+from sklearn.externals import joblib
+
+
 
 """
   (1) The text is an array of chars (in row-major order) where
@@ -57,19 +61,18 @@
     return np.ones((x, y), np.uint8)
 
 
-def enhanceSID(image):
+def getSID(image, classifier):
     image=255-image
     image=img_as_ubyte(image>100)
     cv2.imwrite("enSID0.png", image)
     # Remove noise
     image = cv2.morphologyEx(image, cv2.MORPH_OPEN, kernel(2,2), iterations=1)
     # Closing. Connect non connected parts
-    image = cv2.morphologyEx(image, cv2.MORPH_CLOSE, kernel(5, 5), iterations=2)
+    image = cv2.morphologyEx(image, cv2.MORPH_CLOSE, kernel(5, 3), iterations=4)
     # Again noise removal after closing
+
     image = cv2.morphologyEx(image, cv2.MORPH_OPEN, kernel(8,8), iterations=1)
     # Skeletonization
-    ##For thinning I am using erosion
-    ##image = cv2.erode(image,kernel(4,4),iterations = 40)
     image = img_as_ubyte(morphology.thin(image>128))
     cv2.imwrite("enSID1.png",image)
     # Stub removal (might not be necessary if thinning instead of skeletonize is used above
@@ -80,4 +83,26 @@
     # Thining again
     image = img_as_ubyte(morphology.skeletonize(image>0.5))
     image = cv2.morphologyEx(image, cv2.MORPH_DILATE, kernel(10, 10))
+
+    im2,ctrs, hier = cv2.findContours(image.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
+    sorted_ctrs = sorted(ctrs, key=lambda ctr: cv2.boundingRect(ctr)[0])
+
+    #classifier = joblib.load('filename.joblib')
+
+    sid_no=""
+    for i, ctr in enumerate(sorted_ctrs):
+        # Get bounding box
+        x, y, w, h = cv2.boundingRect(ctr)
+        # Getting ROI
+        if(w<h/2):
+            sid_no=sid_no+"1"
+            continue
+        roi = image[y:y+h, x:x+w]
+        roi = img_as_ubyte(roi < 128)
+        roi = cv2.resize(roi,(32,32))
+
+        #cv2.rectangle(image,(x,y),( x + w, y + h ),(0,255,0),2)
+        cv2.imwrite('sid_no_{}.png'.format(i), roi)
+        sid_no=sid_no+str(classifier.predict(roi.reshape(1,-1)/255.0)[0])
+    print(sid_no)
     return image

--
Gitblit v1.9.3