From 0b5a8decb9cc2ba96d2aed1721e48bafb751e33c Mon Sep 17 00:00:00 2001
From: Samo Penic <samo.penic@gmail.com>
Date: Fri, 16 Nov 2018 18:23:09 +0000
Subject: [PATCH] ups, forgot classifier object dump

---
 Ocr.py |   20 +++++++++++++++++---
 1 files changed, 17 insertions(+), 3 deletions(-)

diff --git a/Ocr.py b/Ocr.py
index ee715f0..35c6729 100644
--- a/Ocr.py
+++ b/Ocr.py
@@ -1,16 +1,18 @@
 from pyzbar.pyzbar import decode
+from sid_process import getSID
 import cv2
 import numpy as np
 import math
 
 
 class Paper:
-    def __init__(self, filename=None):
+    def __init__(self, filename=None, sid_classifier=None):
         self.filename = filename
         self.invalid = None
         self.QRData = None
         self.errors = []
         self.warnings = []
+        self.sid_classifier=sid_classifier
         if filename is not None:
             self.loadImage(filename)
             self.runOcr()
@@ -136,8 +138,8 @@
             loc_filtered_x, loc_filtered_y = zip(
                 *sorted(zip(loc_filtered_x, loc_filtered_y))
             )
-        # loc=[loc_filtered_y,loc_filtered_x]
-        # remove duplicates
+            # loc=[loc_filtered_y,loc_filtered_x]
+            # remove duplicates
             a = np.diff(loc_filtered_x) > 40
             a = np.append(a, True)
             loc_filtered_x = np.array(loc_filtered_x)
@@ -210,3 +212,15 @@
                 black = totpx - cv2.countNonZero(roi)
                 oneline.append(black / totpx)
             self.answerMatrix.append(oneline)
+
+    def get_enhanced_sid(self):
+        if self.sid_classifier is None:
+            return "x"
+        es = getSID(
+            self.img[
+                int(0.045 * self.imgHeight) : int(0.085 * self.imgHeight),
+                int(0.7 * self.imgWidth) : int(0.99 * self.imgWidth),
+            ],
+            self.sid_classifier,
+        )
+        return es

--
Gitblit v1.9.3