From 0b5a8decb9cc2ba96d2aed1721e48bafb751e33c Mon Sep 17 00:00:00 2001 From: Samo Penic <samo.penic@gmail.com> Date: Fri, 16 Nov 2018 18:23:09 +0000 Subject: [PATCH] ups, forgot classifier object dump --- Ocr.py | 20 +++++++++++++++++--- 1 files changed, 17 insertions(+), 3 deletions(-) diff --git a/Ocr.py b/Ocr.py index ee715f0..35c6729 100644 --- a/Ocr.py +++ b/Ocr.py @@ -1,16 +1,18 @@ from pyzbar.pyzbar import decode +from sid_process import getSID import cv2 import numpy as np import math class Paper: - def __init__(self, filename=None): + def __init__(self, filename=None, sid_classifier=None): self.filename = filename self.invalid = None self.QRData = None self.errors = [] self.warnings = [] + self.sid_classifier=sid_classifier if filename is not None: self.loadImage(filename) self.runOcr() @@ -136,8 +138,8 @@ loc_filtered_x, loc_filtered_y = zip( *sorted(zip(loc_filtered_x, loc_filtered_y)) ) - # loc=[loc_filtered_y,loc_filtered_x] - # remove duplicates + # loc=[loc_filtered_y,loc_filtered_x] + # remove duplicates a = np.diff(loc_filtered_x) > 40 a = np.append(a, True) loc_filtered_x = np.array(loc_filtered_x) @@ -210,3 +212,15 @@ black = totpx - cv2.countNonZero(roi) oneline.append(black / totpx) self.answerMatrix.append(oneline) + + def get_enhanced_sid(self): + if self.sid_classifier is None: + return "x" + es = getSID( + self.img[ + int(0.045 * self.imgHeight) : int(0.085 * self.imgHeight), + int(0.7 * self.imgWidth) : int(0.99 * self.imgWidth), + ], + self.sid_classifier, + ) + return es -- Gitblit v1.9.3