Adding ending energy to filaments. In progress. Continue in single_filament_vertex_move
| | |
| | | return blist->bond[blist->n-1]; |
| | | } |
| | | |
| | | |
| | | ts_bool bond_vector(ts_bond *bond){ |
| | | |
| | | bond->x=bond->vtx1->x-bond->vtx2->x; |
| | | bond->y=bond->vtx1->y-bond->vtx2->y; |
| | | bond->z=bond->vtx1->z-bond->vtx2->z; |
| | | |
| | | return TS_SUCCESS; |
| | | } |
| | | |
| | | |
| | | ts_bool bond_list_free(ts_bond_list *blist){ |
| | | ts_uint i; |
| | | for(i=0;i<blist->n;i++){ |
| | |
| | | */ |
| | | ts_bond *bond_add(ts_bond_list *blist, ts_vertex *vtx1, ts_vertex *vtx2); |
| | | |
| | | ts_bool bond_vector(ts_bond *bond); |
| | | ts_bool bond_list_free(ts_bond_list *blist); |
| | | |
| | | |
| | |
| | | vtx[i]->y-=vesicle->cm[1]; |
| | | vtx[i]->z-=vesicle->cm[2]; |
| | | } |
| | | |
| | | //move polymers for the same vector as we moved vesicle |
| | | for(i=0;i<vesicle->poly_list->n;i++){ |
| | | for(j=0;j<vesicle->poly_list->poly[i]->vlist->n;j++){ |
| | | vesicle->poly_list->poly[i]->vlist->vtx[j]->x-=vesicle->cm[0]; |
| | |
| | | vesicle->poly_list->poly[i]->vlist->vtx[j]->z-=vesicle->cm[2]; |
| | | } |
| | | } |
| | | //move filaments for the same vector as we moved vesicle |
| | | for(i=0;i<vesicle->filament_list->n;i++){ |
| | | for(j=0;j<vesicle->filament_list->poly[i]->vlist->n;j++){ |
| | | vesicle->filament_list->poly[i]->vlist->vtx[j]->x-=vesicle->cm[0]; |
| | | vesicle->filament_list->poly[i]->vlist->vtx[j]->y-=vesicle->cm[1]; |
| | | vesicle->filament_list->poly[i]->vlist->vtx[j]->z-=vesicle->cm[2]; |
| | | } |
| | | } |
| | | |
| | | |
| | | vesicle->cm[0]=0; |
| | | vesicle->cm[1]=0; |
| | | vesicle->cm[2]=0; |
| | | vesicle->cm[0]=0.0; |
| | | vesicle->cm[1]=0.0; |
| | | vesicle->cm[2]=0.0; |
| | | |
| | | return TS_SUCCESS; |
| | | } |
| | | |
| | | ts_bool cell_occupation(ts_vesicle *vesicle){ |
| | | ts_uint i,j,cellidx, n=vesicle->vlist->n; |
| | | //ts_double shift; |
| | | //ts_double dcell; |
| | | //shift=(ts_double) vesicle->clist->ncmax[0]/2; |
| | | //dcell=1.0/(1.0 + vesicle->stepsize); |
| | | //`fprintf(stderr, "Bil sem tu\n"); |
| | | |
| | | cell_list_cell_occupation_clear(vesicle->clist); |
| | | for(i=0;i<n;i++){ |
| | |
| | | cell_add_vertex(vesicle->clist->cell[cellidx],vesicle->vlist->vtx[i]); |
| | | } |
| | | |
| | | //Add all polymers to cells |
| | | for(i=0;i<vesicle->poly_list->n;i++){ |
| | | for(j=0;j<vesicle->poly_list->poly[i]->vlist->n;j++){ |
| | | cellidx=vertex_self_avoidance(vesicle, vesicle->poly_list->poly[i]->vlist->vtx[j]); |
| | | cell_add_vertex(vesicle->clist->cell[cellidx],vesicle->poly_list->poly[i]->vlist->vtx[j]); |
| | | } |
| | | } |
| | | //Add all filaments to cells |
| | | for(i=0;i<vesicle->filament_list->n;i++){ |
| | | for(j=0;j<vesicle->filament_list->poly[i]->vlist->n;j++){ |
| | | cellidx=vertex_self_avoidance(vesicle, vesicle->filament_list->poly[i]->vlist->vtx[j]); |
| | | cell_add_vertex(vesicle->clist->cell[cellidx],vesicle->filament_list->poly[i]->vlist->vtx[j]); |
| | | } |
| | | } |
| | | |
| | | |
| | | |
| | | //fprintf(stderr, "Bil sem tu\n"); |
| | | //if(dcell); |
| | | //if(shift); |
| | | return TS_SUCCESS; |
| | | } |
| | |
| | | ts_vertex *vtx2; |
| | | ts_double bond_length; |
| | | ts_double bond_length_dual; |
| | | ts_bool tainted; |
| | | ts_bool tainted; //TODO: remove |
| | | ts_double energy; |
| | | ts_double x,y,z; |
| | | }; |
| | | typedef struct ts_bond ts_bond; |
| | | |
| | |
| | | ts_vesicle *create_vesicle_from_tape(ts_tape *tape){ |
| | | ts_vesicle *vesicle; |
| | | vesicle=initial_distribution_dipyramid(tape->nshell,tape->ncxmax,tape->ncymax,tape->nczmax,tape->stepsize); |
| | | // Nucleus: |
| | | vesicle->R_nucleus=tape->R_nucleus; |
| | | //Initialize grafted polymers (brush): |
| | | vesicle->poly_list=init_poly_list(tape->npoly,tape->nmono, vesicle->vlist, vesicle); |
| | | vesicle->spring_constant=tape->kspring; |
| | | poly_assign_spring_const(vesicle); |
| | | //Initialize filaments (polymers inside the vesicle): |
| | | vesicle->filament_list=init_poly_list(tape->nfil,tape->nfono, NULL, vesicle); |
| | | ts_uint i,j; |
| | | for(i=0;i<vesicle->filament_list->n;i++){ |
| | | for(j=0;j<vesicle->filament_list->poly[i]->vlist->n;j++){ |
| | | |
| | | fprintf(stderr,"%e %e %e\n", vesicle->filament_list->poly[i]->vlist->vtx[j]->x,vesicle->filament_list->poly[i]->vlist->vtx[j]->y, vesicle->filament_list->poly[i]->vlist->vtx[j]->z ); |
| | | } |
| | | } |
| | | // vesicle->spring_constant=tape->kspring; |
| | | // poly_assign_spring_const(vesicle); |
| | | |
| | | |
| | | vesicle->nshell=tape->nshell; |
| | | vesicle->dmax=tape->dmax*tape->dmax; /* dmax^2 in the vesicle dmax variable */ |
| | |
| | | /* Here comes header of the file */ |
| | | |
| | | //find number of extra vtxs and bonds of polymeres |
| | | ts_uint monono=0, polyno=0, poly_idx=0; |
| | | ts_bool poly=0; |
| | | ts_uint monono=0, polyno=0, poly_idx=0, filno=0, fonono=0; |
| | | ts_bool poly=0, fil=0; |
| | | if(vesicle->poly_list!=NULL){ |
| | | if(vesicle->poly_list->poly[0]!=NULL){ |
| | | polyno=vesicle->poly_list->n; |
| | |
| | | poly=1; |
| | | } |
| | | } |
| | | |
| | | if(vesicle->filament_list!=NULL){ |
| | | if(vesicle->filament_list->poly[0]!=NULL){ |
| | | filno=vesicle->filament_list->n; |
| | | fonono=vesicle->filament_list->poly[0]->vlist->n; |
| | | fil=1; |
| | | } |
| | | } |
| | | |
| | | fprintf(fh, "<?xml version=\"1.0\"?>\n<VTKFile type=\"UnstructuredGrid\" version=\"0.1\" byte_order=\"LittleEndian\" compressor=\"vtkZLibDataCompressor\">\n <UnstructuredGrid>\n"); |
| | | fprintf(fh, "<Piece NumberOfPoints=\"%u\" NumberOfCells=\"%u\">\n",vlist->n+monono*polyno, blist->n+monono*polyno); |
| | | fprintf(fh, "<Piece NumberOfPoints=\"%u\" NumberOfCells=\"%u\">\n",vlist->n+monono*polyno+fonono*filno, blist->n+monono*polyno+filno*(fonono-1)); |
| | | fprintf(fh,"<PointData Scalars=\"scalars\">\n<DataArray type=\"Int64\" Name=\"scalars\" format=\"ascii\">"); |
| | | for(i=0;i<vlist->n;i++){ |
| | | fprintf(fh,"%u ",vtx[i]->idx); |
| | |
| | | poly_idx=vlist->n; |
| | | for(i=0;i<vesicle->poly_list->n;i++){ |
| | | for(j=0;j<vesicle->poly_list->poly[i]->vlist->n;j++,poly_idx++){ |
| | | fprintf(fh,"%u ", poly_idx); |
| | | } |
| | | } |
| | | } |
| | | //filaments |
| | | if(fil){ |
| | | poly_idx=vlist->n+monono*polyno; |
| | | for(i=0;i<vesicle->filament_list->n;i++){ |
| | | for(j=0;j<vesicle->filament_list->poly[i]->vlist->n;j++,poly_idx++){ |
| | | // fprintf(stderr,"was here\n"); |
| | | fprintf(fh,"%u ", poly_idx); |
| | | } |
| | | } |
| | |
| | | for(i=0;i<vesicle->poly_list->n;i++){ |
| | | for(j=0;j<vesicle->poly_list->poly[i]->vlist->n;j++){ |
| | | fprintf(fh,"%e %e %e\n", vesicle->poly_list->poly[i]->vlist->vtx[j]->x,vesicle->poly_list->poly[i]->vlist->vtx[j]->y, vesicle->poly_list->poly[i]->vlist->vtx[j]->z ); |
| | | } |
| | | } |
| | | } |
| | | //filaments |
| | | if(fil){ |
| | | for(i=0;i<vesicle->filament_list->n;i++){ |
| | | for(j=0;j<vesicle->filament_list->poly[i]->vlist->n;j++){ |
| | | fprintf(fh,"%e %e %e\n", vesicle->filament_list->poly[i]->vlist->vtx[j]->x,vesicle->filament_list->poly[i]->vlist->vtx[j]->y, vesicle->filament_list->poly[i]->vlist->vtx[j]->z ); |
| | | } |
| | | } |
| | | } |
| | |
| | | |
| | | } |
| | | |
| | | //filaments |
| | | if(fil){ |
| | | poly_idx=vlist->n+monono*polyno; |
| | | for(i=0;i<vesicle->filament_list->n;i++){ |
| | | for(j=0;j<vesicle->filament_list->poly[i]->blist->n;j++){ |
| | | fprintf(fh,"%u %u\n", vesicle->filament_list->poly[i]->blist->bond[j]->vtx1->idx+vlist->n+monono*polyno+i*fonono,vesicle->filament_list->poly[i]->blist->bond[j]->vtx2->idx+vlist->n+monono*polyno+i*fonono); |
| | | // fprintf(stderr,"was here\n"); |
| | | |
| | | } |
| | | } |
| | | |
| | | } |
| | | |
| | | fprintf(fh,"</DataArray>\n<DataArray type=\"Int64\" Name=\"offsets\" format=\"ascii\">"); |
| | | for (i=2;i<(blist->n+monono*polyno)*2+1;i+=2){ |
| | | for (i=2;i<(blist->n+monono*polyno+(fonono-1)*filno)*2+1;i+=2){ |
| | | fprintf(fh,"%u ",i); |
| | | } |
| | | fprintf(fh,"\n"); |
| | | fprintf(fh,"</DataArray>\n<DataArray type=\"UInt8\" Name=\"types\" format=\"ascii\">\n"); |
| | | for (i=0;i<blist->n+monono*polyno;i++){ |
| | | for (i=0;i<blist->n+monono*polyno+fonono*filno;i++){ |
| | | fprintf(fh,"3 "); |
| | | } |
| | | |
| | |
| | | CFG_SIMPLE_INT("nshell", &tape->nshell), |
| | | CFG_SIMPLE_INT("npoly", &tape->npoly), |
| | | CFG_SIMPLE_INT("nmono", &tape->nmono), |
| | | CFG_SIMPLE_INT("nfil",&tape->nfil), |
| | | CFG_SIMPLE_INT("nfono",&tape->nfono), |
| | | CFG_SIMPLE_INT("R_nucleus",&tape->R_nucleus), |
| | | CFG_SIMPLE_FLOAT("dmax", &tape->dmax), |
| | | CFG_SIMPLE_FLOAT("xk0",&tape->xk0), |
| | | CFG_SIMPLE_INT("pswitch",&tape->pswitch), |
| | |
| | | long int nczmax; |
| | | long int npoly; |
| | | long int nmono; |
| | | long int nfil; |
| | | long int nfono; |
| | | long int R_nucleus; |
| | | long int pswitch; |
| | | char *multiprocessing; |
| | | long int brezveze0; |
| | |
| | | else |
| | | { |
| | | /* Make filaments inside the vesicle. Helix with radius... Dist. between poly vertices put to 1*/ |
| | | dphi = 2*asin(1/2/vesicle->R_nucleus)*1.001; |
| | | dh = dphi/2/M_PI*1.001; |
| | | dphi = 2.0*asin(1.0/2.0/vesicle->R_nucleus)*1.001; |
| | | dh = dphi/2.0/M_PI*1.001; |
| | | for(i=0;i<poly_list->n;i++){ |
| | | for (j=0;j<poly_list->poly[i]->vlist->n;j++){ |
| | | ji = j + i*poly_list->poly[i]->vlist->n; |
| | | poly_list->poly[i]->vlist->vtx[j]->x = vesicle->R_nucleus*cos(ji*dphi); |
| | | poly_list->poly[i]->vlist->vtx[j]->y = vesicle->R_nucleus*sin(ji*dphi); |
| | | poly_list->poly[i]->vlist->vtx[j]->z = ji*dh; |
| | | poly_list->poly[i]->vlist->vtx[j]->z = ji*dh - (dh*poly_list->n*poly_list->poly[i]->vlist->n/2.0); |
| | | } |
| | | } |
| | | } |
| | |
| | | k_spring=800 |
| | | |
| | | ####### Filament (inside the vesicle) definitions ########### |
| | | # npoly is a number of polymers attached to npoly distinct vertices on vesicle |
| | | nfil=0 |
| | | # nmono is a number of monomers in each filament |
| | | nfono=10 |
| | | # nfil is a number of filaments inside the vesicle |
| | | nfil=1 |
| | | # nfono is a number of monomers in each filament |
| | | nfono=300 |
| | | # Spring constant between monomers of the filament |
| | | k_sfring=800 |
| | | |
| | | ####### Nucleus (inside the vesicle) ########### |
| | | # Radius of an impenetrable hard sphere inside the vesicle |
| | | R_nucleus=5 |
| | | |
| | | ####### Cell definitions ############ |
| | | nxmax=60 |
| | |
| | | |
| | | ####### Program Control ############ |
| | | #how many MC sweeps between subsequent records of states to disk |
| | | mcsweeps=5000 |
| | | mcsweeps=300 |
| | | #how many initial mcsweeps*inititer MC sweeps before recording to disk? |
| | | inititer=1 |
| | | inititer=0 |
| | | #how many records do you want on the disk iteration are there in a run? |
| | | iterations=1000 |
| | | iterations=300 |
| | | |
| | | |
| | | #shut up if we are using cluster!!! |
| | |
| | | cell_occupation(vesicle); |
| | | ts_fprintf(stdout,"Done %d out of %d iterations (x %d MC sweeps).\n",i+1,inititer+iterations,mcsweeps); |
| | | dump_state(vesicle,i); |
| | | if(i>inititer){ |
| | | if(i>=inititer){ |
| | | write_vertex_xml_file(vesicle,i-inititer); |
| | | } |
| | | } |
| | |
| | | rnvec[2]=drand48(); |
| | | retval=single_poly_vertex_move(vesicle,vesicle->poly_list->poly[i],vesicle->poly_list->poly[i]->vlist->vtx[j],rnvec); |
| | | } |
| | | |
| | | } |
| | | |
| | | |
| | | for(i=0;i<vesicle->filament_list->n;i++){ |
| | | for(j=0;j<vesicle->filament_list->poly[i]->vlist->n;j++){ |
| | | rnvec[0]=drand48(); |
| | | rnvec[1]=drand48(); |
| | | rnvec[2]=drand48(); |
| | | retval=single_filament_vertex_move(vesicle,vesicle->filament_list->poly[i],vesicle->filament_list->poly[i]->vlist->vtx[j],rnvec); |
| | | } |
| | | } |
| | | |
| | | |
| | | // printf("Bondflip success rate in one sweep: %d/%d=%e\n", cnt,3*vesicle->blist->n,(double)cnt/(double)vesicle->blist->n/3.0); |
| | | if(retval); |
| | | return TS_SUCCESS; |
| | |
| | | //END MONTE CARLOOOOOOO |
| | | return TS_SUCCESS; |
| | | } |
| | | |
| | | |
| | | |
| | | |
| | | ts_bool single_filament_vertex_move(ts_vesicle *vesicle,ts_poly *poly,ts_vertex *vtx,ts_double *rn){ |
| | | ts_uint i; |
| | | ts_bool retval; |
| | | ts_uint cellidx; |
| | | // ts_double delta_energy; |
| | | ts_double costheta,sintheta,phi,r; |
| | | ts_double dist[2]; |
| | | //This will hold all the information of vtx and its neighbours |
| | | ts_vertex backupvtx; |
| | | ts_bond backupbond[2]; |
| | | memcpy((void *)&backupvtx,(void *)vtx,sizeof(ts_vertex)); |
| | | |
| | | //random move in a sphere with radius stepsize: |
| | | r=vesicle->stepsize*rn[0]; |
| | | phi=rn[1]*2*M_PI; |
| | | costheta=2*rn[2]-1; |
| | | sintheta=sqrt(1-pow(costheta,2)); |
| | | vtx->x=vtx->x+r*sintheta*cos(phi); |
| | | vtx->y=vtx->y+r*sintheta*sin(phi); |
| | | vtx->z=vtx->z+r*costheta; |
| | | |
| | | |
| | | //distance with neighbours check |
| | | for(i=0;i<vtx->bond_no;i++){ |
| | | dist[i]=vtx_distance_sq(vtx->bond[i]->vtx1,vtx->bond[i]->vtx2); |
| | | if(dist[i]<1.0 || dist[i]>vesicle->dmax) { |
| | | vtx=memcpy((void *)vtx,(void *)&backupvtx,sizeof(ts_vertex)); |
| | | return TS_FAIL; |
| | | } |
| | | } |
| | | |
| | | |
| | | //self avoidance check with distant vertices |
| | | cellidx=vertex_self_avoidance(vesicle, vtx); |
| | | //check occupation number |
| | | retval=cell_occupation_number_and_internal_proximity(vesicle->clist,cellidx,vtx); |
| | | |
| | | if(retval==TS_FAIL){ |
| | | vtx=memcpy((void *)vtx,(void *)&backupvtx,sizeof(ts_vertex)); |
| | | return TS_FAIL; |
| | | } |
| | | |
| | | //backup bonds |
| | | for(i=0;i<vtx->bond_no;i++){ |
| | | memcpy(&backupbond[i],vtx->bond[i], sizeof(ts_bond)); |
| | | vtx->bond[i]->bond_length=sqrt(dist[i]); |
| | | bond_vector(vtx->bond[i]); |
| | | |
| | | } |
| | | |
| | | //if all the tests are successful, then energy for vtx and neighbours is calculated |
| | | // delta_energy=0; |
| | | /* for(i=0;i<vtx->neigh_no;i++){ |
| | | // memcpy((void *)&backupbond[i],(void *)vtx->bond[i],sizeof(ts_bond)); |
| | | xp = vtx->neigh[i] |
| | | vtx->bond[i]->bond_length=sqrt(vtx_distance_sq(vtx->bond[i]->vtx1,vtx->bond[i]->vtx2)); |
| | | bond_energy(vtx->bond[i],poly); |
| | | delta_energy+= vtx->bond[i]->energy - backupbond[i].energy; |
| | | } |
| | | |
| | | if(vtx==poly->vlist->vtx[0]){ |
| | | delta_energy+= |
| | | (pow(sqrt(vtx_distance_sq(vtx, poly->grafted_vtx)-1),2)- |
| | | pow(sqrt(vtx_distance_sq(&backupvtx, poly->grafted_vtx)-1),2)) *poly->k; |
| | | |
| | | } |
| | | |
| | | |
| | | if(delta_energy>=0){ |
| | | #ifdef TS_DOUBLE_DOUBLE |
| | | if(exp(-delta_energy)< drand48() ) |
| | | #endif |
| | | #ifdef TS_DOUBLE_FLOAT |
| | | if(expf(-delta_energy)< (ts_float)drand48()) |
| | | #endif |
| | | #ifdef TS_DOUBLE_LONGDOUBLE |
| | | if(expl(-delta_energy)< (ts_ldouble)drand48()) |
| | | #endif |
| | | { |
| | | //not accepted, reverting changes |
| | | vtx=memcpy((void *)vtx,(void *)&backupvtx,sizeof(ts_vertex)); |
| | | for(i=0;i<vtx->bond_no;i++){ |
| | | vtx->bond[i]=memcpy((void *)vtx->bond[i],(void *)&backupbond[i],sizeof(ts_bond)); |
| | | } |
| | | |
| | | return TS_FAIL; |
| | | } |
| | | } |
| | | |
| | | */ |
| | | // oldcellidx=vertex_self_avoidance(vesicle, &backupvtx[0]); |
| | | if(vtx->cell!=vesicle->clist->cell[cellidx]){ |
| | | retval=cell_add_vertex(vesicle->clist->cell[cellidx],vtx); |
| | | // if(retval==TS_SUCCESS) cell_remove_vertex(vesicle->clist->cell[oldcellidx],vtx); |
| | | if(retval==TS_SUCCESS) cell_remove_vertex(backupvtx.cell,vtx); |
| | | } |
| | | // if(oldcellidx); |
| | | //END MONTE CARLOOOOOOO |
| | | return TS_SUCCESS; |
| | | } |
| | |
| | | ts_bool single_verticle_timestep(ts_vesicle *vesicle,ts_vertex *vtx,ts_double *rn); |
| | | |
| | | ts_bool single_poly_vertex_move(ts_vesicle *vesicle,ts_poly *poly,ts_vertex *vtx,ts_double *rn); |
| | | |
| | | ts_bool single_filament_vertex_move(ts_vesicle *vesicle,ts_poly *poly,ts_vertex *vtx,ts_double *rn); |