| | |
| | | <set /> |
| | | </value> |
| | | </entry> |
| | | <entry key="$USER_HOME$/PycharmProjects/berki-parse/aoi_gen/Problem.py"> |
| | | <value> |
| | | <set /> |
| | | </value> |
| | | </entry> |
| | | <entry key="$USER_HOME$/PycharmProjects/berki-parse/aoi_gen/Variable.py"> |
| | | <value> |
| | | <set /> |
| | | </value> |
| | | </entry> |
| | | <entry key="$USER_HOME$/PycharmProjects/berki-parse/testcases/dvovod3.txt"> |
| | | <value> |
| | | <set /> |
| | | </value> |
| | | </entry> |
| | | <entry key="$USER_HOME$/PycharmProjects/berki-parse/testcases/silaCurka1.txt"> |
| | | <value> |
| | | <set /> |
| | | </value> |
| | | </entry> |
| | | <entry key="$PROJECT_DIR$/../../django/sizif-web/aoi/MainDocker/Dockerfile"> |
| | | <value> |
| | | <set /> |
| | | </value> |
| | | </entry> |
| | | <entry key="$PROJECT_DIR$/../../django/sizif-web/aoi/README.md"> |
| | | <value> |
| | | <set /> |
| | | </value> |
| | |
| | | <set /> |
| | | </value> |
| | | </entry> |
| | | <entry key="$PROJECT_DIR$/../../django/sizif-web/aoi/exam/templates/exam/exam_detail.html"> |
| | | <value> |
| | | <set /> |
| | | </value> |
| | | </entry> |
| | | <entry key="$PROJECT_DIR$/../../django/sizif-web/aoi/exam/templates/exam/exam_new.html"> |
| | | <value> |
| | | <set /> |
| | | </value> |
| | | </entry> |
| | | <entry key="$PROJECT_DIR$/../../django/sizif-web/aoi/exam/templates/exam/postprocess.html"> |
| | | <value> |
| | | <set /> |
| | |
| | | from aoi_ocr.Ocr import Paper |
| | | from sklearn.externals import joblib |
| | | import pkg_resources |
| | | path = '/filename.joblib' # always use slash |
| | | filepath = pkg_resources.resource_filename('aoi_ocr', path) |
| | | |
| | | path = "/filename.joblib" # always use slash |
| | | filepath = pkg_resources.resource_filename("aoi_ocr", path) |
| | | |
| | | from glob import glob |
| | | |
| | | settings = {"sid_mask": "11x0xxxx", "answer_threshold": 0.25} |
| | | classifier = joblib.load(filepath) |
| | | |
| | | #p = Paper(filename="testpage300dpi_scan1.png") |
| | | #p=Paper(filename='sizif111.tif', sid_classifier=classifier, settings={"sid_mask": "11xx0xxx", "answer_threshold": 0.25}) |
| | | #p=Paper(filename='processed_scans/20141016095134535_0006.tif', sid_classifier=classifier, settings=settings) |
| | | #p = Paper(filename="processed_scans/20151111080408825_0001.tif",sid_classifier=classifier,settings=settings,) |
| | | #p=Paper(filename='processed_scans/20151028145444607_0028.tif', sid_classifier=classifier, settings=settings) |
| | | # p = Paper(filename="testpage300dpi_scan1.png") |
| | | # p=Paper(filename='sizif111.tif', sid_classifier=classifier, settings={"sid_mask": "11xx0xxx", "answer_threshold": 0.25}) |
| | | # p=Paper(filename='processed_scans/20141016095134535_0006.tif', sid_classifier=classifier, settings=settings) |
| | | # p = Paper(filename="processed_scans/20151111080408825_0001.tif",sid_classifier=classifier,settings=settings,) |
| | | # p=Paper(filename='processed_scans/20151028145444607_0028.tif', sid_classifier=classifier, settings=settings) |
| | | pa = [ |
| | | "processed_scans/20141016095134535_0006.tif", |
| | | "processed_scans/20141016095134535_0028.tif", |
| | |
| | | "processed_scans/20141028095553745_0018.tif", |
| | | "processed_scans/20151013180545275_0011.tif", |
| | | "processed_scans/20160408140801098_0004.tif", |
| | | "processed_scans/20160510075445995_0026.tif" |
| | | "processed_scans/20160510075445995_0026.tif", |
| | | ] |
| | | #p=Paper(filename=pa[9], sid_classifier=classifier, settings=settings) |
| | | p=Paper(filename='test3.tif', sid_classifier=classifier, settings=settings) |
| | | # p=Paper(filename=pa[9], sid_classifier=classifier, settings=settings) |
| | | p = Paper(filename="test3.tif", sid_classifier=classifier, settings=settings) |
| | | |
| | | # print(p.QRData) |
| | | # print(p.errors) |
| | | |
| | | # print(p.getSkewAngle()) |
| | | # print(p.locateUpMarkers()) |
| | | # print(p.locateUpMarkers())%% |
| | | # print(p.locateRightMarkers()) |
| | | # print(p.answerMatrix) |
| | | # p.get_enhanced_sid() |
| | |
| | | |
| | | exit(0) |
| | | filelist = glob("processed_scans/*.tif") |
| | | wrong_sid=0; |
| | | total=0 |
| | | wrong_sid = 0 |
| | | total = 0 |
| | | for f in sorted(filelist): |
| | | print("processing: {}".format(f)) |
| | | p=Paper(filename=f, sid_classifier=classifier, settings=settings).get_paper_ocr_data() |
| | | print(f,p) |
| | | if(p['page_no']==0): |
| | | total+=1 |
| | | if(len(p['errors'])!=0): |
| | | wrong_sid+=1 |
| | | if total%10 == 0: |
| | | print("Total:{}, wrong SID: {}".format(total,wrong_sid)) |
| | | p = Paper( |
| | | filename=f, sid_classifier=classifier, settings=settings |
| | | ).get_paper_ocr_data() |
| | | print(f, p) |
| | | if p["page_no"] == 0: |
| | | total += 1 |
| | | if len(p["errors"]) != 0: |
| | | wrong_sid += 1 |
| | | if total % 10 == 0: |
| | | print("Total:{}, wrong SID: {}".format(total, wrong_sid)) |
| | | |
| | | print("Total:{}, wrong SID: {}".format(total,wrong_sid)) |
| | | print("Total:{}, wrong SID: {}".format(total, wrong_sid)) |
| | |
| | | |
| | | import pkg_resources |
| | | |
| | | templatefile = '/template-8.png' # always use slash |
| | | templatefile = "/template-8.png" # always use slash |
| | | template8 = pkg_resources.resource_filename(__name__, templatefile) |
| | | |
| | | |
| | |
| | | return np.ones((x, y), np.uint8) |
| | | |
| | | |
| | | def find_biggest_blob(image, original_image,sid_mask): |
| | | def find_biggest_blob(image, original_image, sid_mask): |
| | | if sid_mask[0] == "1": |
| | | move_left = 35 |
| | | elif sid_mask[0] == "x": |
| | | move_left = 40 |
| | | else: |
| | | move_left = 0 |
| | | # Remove noise |
| | | # Remove noise |
| | | image2 = cv2.morphologyEx( |
| | | original_image, cv2.MORPH_OPEN, kernel(2, 2), iterations=3 |
| | | ) |
| | |
| | | image = image[y : y + h, x + 25 - move_left : x + w - 40] # +25,-25 |
| | | return image |
| | | |
| | | |
| | | def sid_compare(sid_no, sid_mask): |
| | | """ |
| | | Function compares student id number with student id mask if the recognised number is valid according to the mask |
| | |
| | | return True |
| | | |
| | | |
| | | def segment_by_contours(image, original_image, classifier,sid_mask): |
| | | def segment_by_contours(image, original_image, classifier, sid_mask): |
| | | """ |
| | | First algorithm. it segments numerals with contours. It works with numbers where individual numerals does not touch. |
| | | :param image: |
| | |
| | | """ |
| | | |
| | | sid_no = "" |
| | | image=find_biggest_blob(image,original_image,sid_mask) |
| | | cv2.imwrite("/tmp/sid_contour1.png",image) |
| | | image = find_biggest_blob(image, original_image, sid_mask) |
| | | cv2.imwrite("/tmp/sid_contour1.png", image) |
| | | im2, ctrs, hier = cv2.findContours( |
| | | image.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE |
| | | ) |
| | |
| | | """ |
| | | sid_no = "" |
| | | sid_len = len(sid_mask) |
| | | image=find_biggest_blob(image,original_image,sid_mask) |
| | | image = find_biggest_blob(image, original_image, sid_mask) |
| | | cv2.imwrite("/tmp/sidblock2.png", image) |
| | | imgHeight, imgWidth = image.shape[0:2] |
| | | numWidth = int(imgWidth / (sid_len)) |
| | |
| | | cv2.imwrite("/tmp/enSID0.png", image) |
| | | |
| | | # Remove noise |
| | | #image = cv2.morphologyEx(image, cv2.MORPH_OPEN, kernel(2, 2), iterations=3) |
| | | # image = cv2.morphologyEx(image, cv2.MORPH_OPEN, kernel(2, 2), iterations=3) |
| | | |
| | | # Closing. Connect non connected parts |
| | | image = cv2.morphologyEx(image, cv2.MORPH_CLOSE, kernel(5, 1), iterations=4) |