| | |
| | | #include<math.h> |
| | | |
| | | /** @brief Prepares the list for triangles. |
| | | * @returns pointer to empty data structure for maintaining triangle list. |
| | | * |
| | | * Create empty list for holding the information on triangles. Triangles are |
| | | * added later on with triangle_add(). |
| | |
| | | } |
| | | |
| | | /** @brief Add the triangle to the triangle list and create necessary data |
| | | * structures. |
| | | * structures. |
| | | * @param *tlist is a pointer to triangle list where triangle should be created |
| | | * @param *vtx1, *vtx2, *vtx3 are the three vertices defining the triangle |
| | | * @returns pointer to the newly created triangle on success and NULL if |
| | | * triangle could not be created. It breaks program execution if memory |
| | | * allocation of triangle list can't be done. |
| | | * |
| | | * Add the triangle ts_triangle with ts_triangle_data to the ts_triangle_list. |
| | | * Add the triangle ts_triangle to the ts_triangle_list. |
| | | * The triangle list is resized, the ts_triangle is allocated and |
| | | * ts_triangle_data is allocated and zeroed. The function receives 4 arguments: |
| | | * ts_triangle_list *tlist as list of triangles and 3 ts_vertex *vtx as |
| | | * vertices that are used to form a triangle. Returns a pointer to newly |
| | | * created triangle. This pointer doesn't need assigning, since it is |
| | | * triangle data is zeroed. Returned pointer to newly |
| | | * created triangle doesn't need assigning, since it is |
| | | * referenced by triangle list. |
| | | * |
| | | * WARNING: Function can be accelerated a bit by removing the NULL checks. |
| | |
| | | |
| | | tlist->tria[tlist->n-1]=(ts_triangle *)calloc(1,sizeof(ts_triangle)); |
| | | if(tlist->tria[tlist->n-1]==NULL) fatal("Cannot reallocate memory for additional ts_triangle.",5); |
| | | // tlist->tria[tlist->n-1]->data=(ts_triangle_data *)calloc(1,sizeof(ts_triangle_data)); |
| | | |
| | | //NOW insert vertices! |
| | | tlist->tria[tlist->n - 1]->idx=tlist->n-1; |
| | |
| | | } |
| | | |
| | | /** @brief Add the neigbour to triangles. |
| | | * @param *tria is a first triangle. |
| | | * @param *ntria is a second triangle. |
| | | * @returns TS_SUCCES on sucessful adition to the list, TS_FAIL if triangles |
| | | * are NULL and breaks execution FATALY if memory allocation error occurs. |
| | | * |
| | | * Add the neigbour to the list of neighbouring triangles. The |
| | | * neighbouring triangles are those, who share two vertices. Function resizes |
| | | * neighbouring triangles are those, who share two vertices and corresponding |
| | | * bond. Function resizes |
| | | * the list and adds the pointer to neighbour. It receives two arguments of |
| | | * ts_triangle type. It then adds second triangle to the list of first |
| | | * triangle, but not the opposite. Upon |
| | |
| | | * debugging stupid NULL pointers. |
| | | * |
| | | * Example of usage: |
| | | * triangle_remove_neighbour(tlist->tria[3], tlist->tria[4]); |
| | | * triangle_add_neighbour(tlist->tria[3], tlist->tria[4]); |
| | | * |
| | | * Triangles 3 and 4 are not neighbours anymore. |
| | | * Triangle 4 is a neighbour of triangle 3, but (strangely) not the |
| | | * oposite. The function should be called again with the changed order of |
| | | * triangles to make neighbourship mutual. |
| | | * |
| | | */ |
| | | |
| | | ts_bool triangle_add_neighbour(ts_triangle *tria, ts_triangle *ntria){ |
| | | if(tria==NULL || ntria==NULL) return TS_FAIL; |
| | | /*TODO: check if the neighbour already exists! Now there is no such check |
| | | * because of the performance issue. */ |
| | | tria->neigh_no++; |
| | | tria->neigh=realloc(tria->neigh,tria->neigh_no*sizeof(ts_triangle *)); |
| | | if(tria->neigh == NULL) |
| | | fatal("Reallocation of memory failed during insertion of triangle neighbour in triangle_add_neighbour",3); |
| | | tria->neigh[tria->neigh_no-1]=ntria; |
| | | |
| | | |
| | | /* we repeat the procedure for the neighbour */ |
| | | /* ntria->data->neigh_no++; |
| | | ntria->data->neigh=realloc(ntria->data->neigh,ntria->data->neigh_no*sizeof(ts_triangle *)); |
| | | if(ntria->data->neigh == NULL) |
| | | fatal("Reallocation of memory failed during insertion of triangle neighbour in triangle_add_neighbour",3); |
| | | ntria->data->neigh[ntria->data->neigh_no-1]=tria; |
| | | */ |
| | | tria->neigh[tria->neigh_no-1]=ntria; |
| | | return TS_SUCCESS; |
| | | } |
| | | |
| | | /** @brief Remove the neigbours from triangle. |
| | | * @param *tria is a first triangle. |
| | | * @param *ntria is neighbouring triangle. |
| | | * @returns TS_SUCCESS on successful removal, TS_FAIL if triangles are not |
| | | * neighbours and it breaks program execution FATALY if memory allocation |
| | | * problem occurs. |
| | | * |
| | | * Removes the neigbour from the list of neighbouring triangles. The |
| | | * neighbouring triangles are those, who share two vertices. Function resizes |
| | | * neighbouring triangles are those, who share two vertices and corresponding |
| | | * bond. Function resizes |
| | | * the list and deletes the pointer to neighbour. It receives two arguments of |
| | | * ts_triangle type. It then removes eachother form eachother's list. Upon |
| | | * ts_triangle type. It then mutually removes triangles from eachouther |
| | | * neighbour list. Upon |
| | | * success it returns TS_SUCCESS, upon failure to find the triangle in the |
| | | * neighbour list returns TS_FAIL and it FATALY ends when the datastructure |
| | | * cannot be resized. |
| | | * neighbour list returns TS_FAIL. It FATALY breaks program execution when the datastructure |
| | | * cannot be resized due to memory constrain problems. |
| | | * |
| | | * WARNING: The function doesn't check whether the pointer is NULL or invalid. It is the |
| | | * job of programmer to make sure the pointer is valid. |
| | |
| | | } |
| | | if(j==i) { |
| | | return TS_FAIL; |
| | | //fatal("In triangle_remove_neighbour: Specified neighbour does not exist for given triangle",3); |
| | | } |
| | | tria->neigh_no--; |
| | | // fprintf(stderr,"*** tria_number=%d\n",tria->neigh_no); |
| | | tria->neigh=(ts_triangle **)realloc(tria->neigh,tria->neigh_no*sizeof(ts_triangle *)); |
| | | if(tria->neigh == NULL){ |
| | | fprintf(stderr,"Ooops: tria->neigh_no=%d\n",tria->neigh_no); |
| | | fatal("Reallocation of memory failed during removal of vertex neighbour in triangle_remove_neighbour",100); |
| | | } |
| | | /* we repeat the procedure for neighbour */ |
| | |
| | | } |
| | | if(j==i) { |
| | | return TS_FAIL; |
| | | //fatal("In triangle_remove_neighbour: Specified neighbour does not exist for given triangle",3); |
| | | } |
| | | ntria->neigh_no--; |
| | | // fprintf(stderr,"*** ntria_number=%d\n",ntria->neigh_no); |
| | | ntria->neigh=(ts_triangle **)realloc(ntria->neigh,ntria->neigh_no*sizeof(ts_triangle *)); |
| | | if(ntria->neigh == NULL){ |
| | | fprintf(stderr,"Ooops: ntria->neigh_no=%d\n",ntria->neigh_no); |
| | | fatal("Reallocation of memory failed during removal of vertex neighbour in triangle_remove_neighbour",100); |
| | | } |
| | | return TS_SUCCESS; |
| | | } |
| | | |
| | | |
| | | /** @brief Calculates normal vector of the triangle. |
| | | |
| | | /** @brief Calculates normal vector of the triangle, its corresponding area and volume. |
| | | * @param *tria is a triangle pointer for which normal, area and volume is |
| | | * to be calculated. |
| | | * @returns TS_SUCCESS on success. (always) |
| | | * |
| | | * Calculate normal vector of the triangle (xnorm, ynorm and znorm) and stores |
| | | * information in underlying ts_triangle_data data_structure. |
| | | * information. At the same time |
| | | * triangle area is determined, since we already have the normal and volume of |
| | | * triangular pyramid with given triangle as a base and vesicle centroid as a |
| | | * tip. |
| | | * |
| | | * Function receives one argument of type ts_triangle. It should be corectly |
| | | * initialized with underlying data structure of type ts_triangle_data. the |
| | | * result is stored in triangle->data->xnorm, triangle->data->ynorm, |
| | | * triangle->data->znorm. Returns TS_SUCCESS on completion. |
| | | * initialized. The |
| | | * result is stored in triangle->xnorm, triangle->ynorm, triangle->znorm. |
| | | * Area and volume are stored into triangle->area and triangle->volume. |
| | | * Returns TS_SUCCESS on completion. |
| | | * |
| | | * NOTE: Function uses math.h library. pow function implementation is selected |
| | | * accordind to the setting in genreal.h |
| | | * NOTE: Function uses math.h library. Function pow implementation is selected |
| | | * accordind to the used TS_DOUBLE_* definition set in general.h, so it should |
| | | * be compatible with any type of floating point precision. |
| | | * |
| | | * Example of usage: |
| | | * triangle_normal_vector(tlist->tria[3]); |
| | | * |
| | | * Computes normals and stores information into tlist->tria[3]->xnorm, |
| | | * tlist->tria[3]->ynorm, tlist->tria[3]->znorm. |
| | | * tlist->tria[3]->ynorm, tlist->tria[3]->znorm tlist->tria[3]->area and |
| | | * tlist->tria[3]->volume. |
| | | * |
| | | */ |
| | | ts_bool triangle_normal_vector(ts_triangle *tria){ |
| | |
| | | return TS_SUCCESS; |
| | | } |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | /** @brief Frees the memory allocated for data structure of triangle list |
| | | * (ts_triangle_list) |
| | | * @param *tlist is a pointer to datastructure triangle list to be freed. |
| | | * @returns TS_SUCCESS on success (always). |
| | | * |
| | | * Function frees the memory of ts_triangle_list previously allocated. It |
| | | * accepts one argument, the address of data structure. It destroys all |