Trisurf Monte Carlo simulator
Samo Penic
2020-04-26 3006183b769f2e126b1a96e6bf697c2b7f657df7
src/energy.c
@@ -1,3 +1,4 @@
/* vim: set ts=4 sts=4 sw=4 noet : */
#include<stdlib.h>
#include "general.h"
#include "energy.h"
@@ -43,12 +44,15 @@
   return TS_SUCCESS;
};
/** @brief Calculation of energy of the vertex
/** @brief Calculation of the bending energy of the vertex.
 *  
 *  Main function that calculates energy of the vertex \f$i\f$. Nearest neighbors (NN) must be ordered in counterclockwise direction for this function to work.
 *  Main function that calculates energy of the vertex \f$i\f$. Function returns \f$\frac{1}{2}(c_1+c_2-c)^2 s\f$, where \f$(c_1+c_2)/2\f$ is mean curvature,
 * \f$c/2\f$ is spontaneous curvature and \f$s\f$ is area per vertex \f$i\f$.
 *
 * Nearest neighbors (NN) must be ordered in counterclockwise direction for this function to work.
 *  Firstly NNs that form two neighboring triangles are found (\f$j_m\f$, \f$j_p\f$ and common \f$j\f$). Later, the scalar product of vectors \f$x_1=(\mathbf{i}-\mathbf{j_p})\cdot (\mathbf{i}-\mathbf{j_p})(\mathbf{i}-\mathbf{j_p})\f$, \f$x_2=(\mathbf{j}-\mathbf{j_p})\cdot  (\mathbf{j}-\mathbf{j_p})\f$  and \f$x_3=(\mathbf{j}-\mathbf{j_p})\cdot (\mathbf{i}-\mathbf{j_p})\f$  are calculated. From these three vectors the \f$c_{tp}=\frac{1}{\tan(\varphi_p)}\f$ is calculated, where \f$\varphi_p\f$ is the inner angle at vertex \f$j_p\f$. The procedure is repeated for \f$j_m\f$ instead of \f$j_p\f$ resulting in \f$c_{tn}\f$.
 *  
 \f{tikzpicture}{
\begin{tikzpicture}{
\coordinate[label=below:$i$] (i) at (2,0);
\coordinate[label=left:$j_m$] (jm) at (0,3.7);
\coordinate[label=above:$j$] (j) at (2.5,6.4);
@@ -74,7 +78,7 @@
\draw [fill=white] (jp) circle (0.1);
\draw [fill=white] (jm) circle (0.1);
%\node[draw,circle,fill=white] at (i) {};
\f}
\end{tikzpicture}
 * The curvature is then calculated as \f$\mathbf{h}=\frac{1}{2}\Sigma_{k=0}^{\mathrm{neigh\_no}} c_{tp}^{(k)}+c_{tm}^{(k)} (\mathbf{j_k}-\mathbf{i})\f$, where \f$c_{tp}^{(k)}+c_{tm}^k=2\sigma^{(k)}\f$ (length in dual lattice?) and the previous equation can be written as \f$\mathbf{h}=\Sigma_{k=0}^{\mathrm{neigh\_no}}\sigma^{(k)}\cdot(\mathbf{j}-\mathbf{i})\f$ (See Kroll, p. 384, eq 70).
 *
@@ -180,7 +184,61 @@
#endif
// c is forced curvature energy for each vertex. Should be set to zero for
// normal circumstances.
/* the following statement is an expression for $\frac{1}{2}\int(c_1+c_2-c_0^\prime)^2\mathrm{d}A$, where $c_0^\prime=2c_0$ (twice the spontaneous curvature)  */
    vtx->energy=0.5*s*(vtx->curvature/s-vtx->c)*(vtx->curvature/s-vtx->c);
    return TS_SUCCESS;
}
ts_bool sweep_attraction_bond_energy(ts_vesicle *vesicle){
   int i;
   for(i=0;i<vesicle->blist->n;i++){
      attraction_bond_energy(vesicle->blist->bond[i], vesicle->tape->w);
   }
   return TS_SUCCESS;
}
inline ts_bool attraction_bond_energy(ts_bond *bond, ts_double w){
   if(fabs(bond->vtx1->c)>1e-16 && fabs(bond->vtx2->c)>1e-16){
      bond->energy=-w;
   }
   else {
      bond->energy=0.0;
   }
   return TS_SUCCESS;
}
ts_double direct_force_energy(ts_vesicle *vesicle, ts_vertex *vtx, ts_vertex *vtx_old){
   if(fabs(vtx->c)<1e-15) return 0.0;
//   printf("was here");
   if(fabs(vesicle->tape->F)<1e-15) return 0.0;
   ts_double norml,ddp=0.0;
   ts_uint i;
   ts_double xnorm=0.0,ynorm=0.0,znorm=0.0;
   /*find normal of the vertex as sum of all the normals of the triangles surrounding it. */
   for(i=0;i<vtx->tristar_no;i++){
         xnorm+=vtx->tristar[i]->xnorm;
         ynorm+=vtx->tristar[i]->ynorm;
         znorm+=vtx->tristar[i]->znorm;
   }
   /*normalize*/
   norml=sqrt(xnorm*xnorm+ynorm*ynorm+znorm*znorm);
   xnorm/=norml;
   ynorm/=norml;
   znorm/=norml;
   /*calculate ddp, perpendicular displacement*/
   ddp=xnorm*(vtx->x-vtx_old->x)+ynorm*(vtx->y-vtx_old->y)+znorm*(vtx->z-vtx_old->z);
   /*calculate dE*/
//   printf("ddp=%e",ddp);
   return vesicle->tape->F*ddp;
}
void stretchenergy(ts_vesicle *vesicle, ts_triangle *triangle){
   triangle->energy=vesicle->tape->xkA0/2.0*pow((triangle->area/vesicle->tlist->a0-1.0),2);
}