| | |
| | | vesicle->blist=init_bond_list(); |
| | | vesicle->tlist=init_triangle_list(); |
| | | vesicle->clist=init_cell_list(ncmax1, ncmax2, ncmax3, stepsize); |
| | | vesicle->mutex=(ts_mutex *)malloc(sizeof(ts_mutex)); |
| | | return vesicle; |
| | | } |
| | | |
| | |
| | | return TS_SUCCESS; |
| | | } |
| | | |
| | | /* @brief Function makes a sum of partial volumes of each triangle. Volumes of |
| | | * |
| | | * Partial volumes are calculated when we calculate normals of triangles. It is |
| | | * relatively easy to calculate the volume of vesicle if we take into account |
| | | * that the volume of the whole vertex is simply sum of all partial volumes of |
| | | * all the triangles. |
| | | */ |
| | | ts_bool vesicle_volume(ts_vesicle *vesicle){ |
| | | ts_double volume; |
| | | ts_double vol; |
| | | ts_uint i; |
| | | ts_triangle **tria=vesicle->tlist->tria; |
| | | volume=0; |
| | | for(i=0; i<vesicle->tlist->n;i++){ |
| | | vol=(tria[i]->vertex[0]->x+ tria[i]->vertex[1]->x + tria[i]->vertex[2]->x) * tria[i]->xnorm + |
| | | (tria[i]->vertex[0]->y+ tria[i]->vertex[1]->y + tria[i]->vertex[2]->y) * tria[i]->ynorm + |
| | | (tria[i]->vertex[0]->z+ tria[i]->vertex[1]->z + tria[i]->vertex[2]->z) * |
| | | tria[i]->znorm; |
| | | volume=volume-vol/18.0; |
| | | volume=volume+tria[i]->volume; |
| | | } |
| | | |
| | | vesicle->volume=volume; |
| | | return TS_SUCCESS; |
| | | } |