Trisurf Monte Carlo simulator
Samo Penic
2016-02-16 e297565ae34d6cc62f41810a261adbeef576af7b
src/timestep.c
@@ -1,472 +1,189 @@
#include<stdlib.h>
#include<math.h>
#include "general.h"
#include "vertex.h"
#include "bond.h"
#include "triangle.h"
#include "vesicle.h"
#include "energy.h"
#include "timestep.h"
#include "cell.h"
//#include "io.h"
#include<stdio.h>
#include<math.h>
//#include "io.h"
#include "general.h"
#include "timestep.h"
#include "vertexmove.h"
#include "bondflip.h"
#include "frame.h"
#include "io.h"
#include "stats.h"
#include "sh.h"
#include "shcomplex.h"
#include "vesicle.h"
#include<gsl/gsl_complex.h>
#include<gsl/gsl_complex_math.h>
#include<string.h>
ts_bool single_timestep(ts_vesicle *vesicle){
ts_bool run_simulation(ts_vesicle *vesicle, ts_uint mcsweeps, ts_uint inititer, ts_uint iterations, ts_uint start_iteration){
   ts_uint i, j,k,l,m;
   ts_double r0,kc1=0,kc2=0,kc3=0,kc4=0;
   ts_double l1,l2,l3,vmsr,bfsr, vmsrt, bfsrt;
   ts_ulong epochtime;
   FILE *fd1,*fd2=NULL;
    char filename[10000];
    strcpy(filename,command_line_args.path);
    strcat(filename,"statistics.csv");
   FILE *fd=fopen(filename,"w");
   if(fd==NULL){
      fatal("Cannot open statistics.csv file for writing",1);
   }
   fprintf(fd, "Epoch OuterLoop VertexMoveSucessRate BondFlipSuccessRate Volume Area lamdba1 lambda2 lambda3 Kc(2-9) Kc(6-9) Kc(2-end) Kc(3-6)\n");
    if(vesicle->sphHarmonics!=NULL){
        strcpy(filename,command_line_args.path);
        strcat(filename,"ulm2.csv");
      fd2=fopen(filename,"w");
      if(fd2==NULL){
         fatal("Cannot open ulm2.csv file for writing",1);
      }
      fprintf(fd2, "Timestep u_00^2 u_10^2 u_11^2 u_20^2 ...\n");
   }
/* RANDOM SEED SET BY CURRENT TIME */
   epochtime=get_epoch();
   srand48(epochtime);
   centermass(vesicle);
   cell_occupation(vesicle);
   vesicle_volume(vesicle); //needed for constant volume at this moment
    vesicle_area(vesicle); //needed for constant area at this moment
   V0=vesicle->volume;
    A0=vesicle->area;
   epsvol=4.0*sqrt(2.0*M_PI)/pow(3.0,3.0/4.0)*V0/pow(vesicle->tlist->n,3.0/2.0);
    epsarea=A0/(ts_double)vesicle->tlist->n;
  //  fprintf(stderr, "DVol=%1.16f (%1.16f), V0=%1.16f\n", epsvol,0.003e-2*V0,V0);
   if(start_iteration<inititer) ts_fprintf(stdout, "Starting simulation (first %d x %d MC sweeps will not be recorded on disk)\n", inititer, mcsweeps);
   for(i=start_iteration;i<inititer+iterations;i++){
      vmsr=0.0;
      bfsr=0.0;
/*    vesicle_volume(vesicle);
    fprintf(stderr,"Volume before TS=%1.16e\n", vesicle->volume); */
      for(j=0;j<mcsweeps;j++){
         single_timestep(vesicle, &vmsrt, &bfsrt);
         vmsr+=vmsrt;
         bfsr+=bfsrt;
      }
/*
    vesicle_volume(vesicle);
    fprintf(stderr,"Volume after TS=%1.16e\n", vesicle->volume); */
      vmsr/=(ts_double)mcsweeps;
      bfsr/=(ts_double)mcsweeps;
      centermass(vesicle);
      cell_occupation(vesicle);
      ts_fprintf(stdout,"Done %d out of %d iterations (x %d MC sweeps).\n",i+1,inititer+iterations,mcsweeps);
            dump_state(vesicle,i);
      if(i>=inititer){
         write_vertex_xml_file(vesicle,i-inititer);
         write_master_xml_file(command_line_args.output_fullfilename);
         epochtime=get_epoch();
         gyration_eigen(vesicle, &l1, &l2, &l3);
         vesicle_volume(vesicle); //calculates just volume.
            vesicle_area(vesicle); //calculates area.
         r0=getR0(vesicle);
            if(vesicle->sphHarmonics!=NULL){
             preparationSh(vesicle,r0);
             //calculateYlmi(vesicle);
             calculateUlmComplex(vesicle);
             storeUlmComplex2(vesicle);
             saveAvgUlm2(vesicle);
                kc1=calculateKc(vesicle, 2,9);
                kc2=calculateKc(vesicle, 6,9);
                kc3=calculateKc(vesicle, 2,vesicle->sphHarmonics->l);
                kc4=calculateKc(vesicle, 3,6);
                strcpy(filename,command_line_args.path);
                strcat(filename,"state.dat");
            fd1=fopen(filename,"w");
            fprintf(fd1,"%e %e\n",vesicle->volume, getR0(vesicle));
            for(k=0;k<vesicle->vlist->n;k++){
               fprintf(fd1,"%e %e %e %e %e\n",
                  vesicle->vlist->vtx[k]->x,
                  vesicle->vlist->vtx[k]->y,
                  vesicle->vlist->vtx[k]->z,
                  vesicle->vlist->vtx[k]->solAngle,
                  vesicle->vlist->vtx[k]->relR
               );
            }
            fclose(fd1);
         fprintf(fd2,"%u ", i);
         for(l=0;l<vesicle->sphHarmonics->l;l++){
            for(m=l;m<2*l+1;m++){
               fprintf(fd2,"%e ", gsl_complex_abs2(vesicle->sphHarmonics->ulmComplex[l][m]) );
            }
         }
            fprintf(fd2,"\n");
             fflush(fd2);
            }
         fprintf(fd, "%lu %u %e %e %1.16e %1.16e %1.16e %1.16e %1.16e %1.16e %1.16e %1.16e %1.16e\n",epochtime,i,vmsr,bfsr,vesicle->volume, vesicle->area,l1,l2,l3,kc1, kc2, kc3,kc4);
          fflush(fd);
      //   sprintf(filename,"timestep-%05d.pov",i-inititer);
      //   write_pov_file(vesicle,filename);
      }
   }
   fclose(fd);
   if(fd2!=NULL) fclose(fd2);
   return TS_SUCCESS;
}
ts_bool single_timestep(ts_vesicle *vesicle,ts_double *vmsr, ts_double *bfsr){
//    vesicle_volume(vesicle);
//    fprintf(stderr,"Volume before TS=%1.16e\n", vesicle->volume);
    ts_bool retval;
    ts_double rnvec[3];
    ts_uint i;
    for(i=0;i<vesicle->vlist.n;i++){
    ts_uint i,j, b;
    ts_uint vmsrcnt=0;
    for(i=0;i<vesicle->vlist->n;i++){
        rnvec[0]=drand48();
        rnvec[1]=drand48();
        rnvec[2]=drand48();
        retval=single_verticle_timestep(vesicle,&vesicle->vlist.vertex[i],rnvec);
        retval=single_verticle_timestep(vesicle,vesicle->vlist->vtx[i],rnvec);
   if(retval==TS_SUCCESS) vmsrcnt++;
    }
    for(i=0;i<vesicle->blist.n;i++){
        rnvec[0]=drand48();
        rnvec[1]=drand48();
        rnvec[2]=drand48();
   ts_int bfsrcnt=0;
    for(i=0;i<3*vesicle->vlist->n;i++){
   b=rand() % vesicle->blist->n;
        //find a bond and return a pointer to a bond...
        //call single_bondflip_timestep...
        retval=single_bondflip_timestep(vesicle,&vesicle->blist.bond[i],rnvec);
    }
        retval=single_bondflip_timestep(vesicle,vesicle->blist->bond[b],rnvec);
       //     b++; retval=TS_FAIL;
   if(retval==TS_SUCCESS) bfsrcnt++;
    }
   for(i=0;i<vesicle->poly_list->n;i++){
      for(j=0;j<vesicle->poly_list->poly[i]->vlist->n;j++){
         rnvec[0]=drand48();
         rnvec[1]=drand48();
         rnvec[2]=drand48();
         retval=single_poly_vertex_move(vesicle,vesicle->poly_list->poly[i],vesicle->poly_list->poly[i]->vlist->vtx[j],rnvec);
      }
   }
   for(i=0;i<vesicle->filament_list->n;i++){
      for(j=0;j<vesicle->filament_list->poly[i]->vlist->n;j++){
         rnvec[0]=drand48();
         rnvec[1]=drand48();
         rnvec[2]=drand48();
         retval=single_filament_vertex_move(vesicle,vesicle->filament_list->poly[i],vesicle->filament_list->poly[i]->vlist->vtx[j],rnvec);
      }
   }
//   printf("Bondflip success rate in one sweep: %d/%d=%e\n", cnt,3*vesicle->blist->n,(double)cnt/(double)vesicle->blist->n/3.0);
   *vmsr=(ts_double)vmsrcnt/(ts_double)vesicle->vlist->n;
   *bfsr=(ts_double)bfsrcnt/(ts_double)vesicle->vlist->n/3.0;
//    vesicle_volume(vesicle);
//    fprintf(stderr,"Volume after TS=%1.16e\n", vesicle->volume);
    return TS_SUCCESS;
}
ts_bool single_verticle_timestep(ts_vesicle *vesicle,ts_vertex *vtx,ts_double
*rn){
    ts_uint i;
    ts_double dist;
    ts_vertex tvtx;
    ts_bool retval;
    ts_uint cellidx;
    ts_double xold,yold,zold;
    ts_double delta_energy,oenergy;
    ts_vertex *ovtx;
    //randomly we move the temporary vertex
    tvtx.x=vtx->x+vesicle->stepsize*(2.0*rn[0]-1.0);
    tvtx.y=vtx->y+vesicle->stepsize*(2.0*rn[1]-1.0);
    tvtx.z=vtx->z+vesicle->stepsize*(2.0*rn[2]-1.0);
    //check we if some length to neighbours are too much
    for(i=0;i<vtx->neigh_no;i++){
        dist=vertex_distance_sq(&tvtx,vtx->neigh[i]);
        if(dist<1.0 || dist>vesicle->dmax) return TS_FAIL;
    }
    //self avoidance check with distant vertices
     cellidx=vertex_self_avoidance(vesicle, &tvtx);
    //check occupation number
     retval=cell_occupation_number_and_internal_proximity(&vesicle->clist,cellidx,vtx,&tvtx);
    if(retval==TS_FAIL){
        return TS_FAIL;
    }
    //if all the tests are successful, then we update the vertex position
    xold=vtx->x;
    yold=vtx->y;
    zold=vtx->z;
    ovtx=malloc(sizeof(ts_vertex));
    vertex_full_copy(ovtx,vtx);
    vtx->x=tvtx.x;
    vtx->y=tvtx.y;
    vtx->z=tvtx.z;
    delta_energy=0;
    //update the normals of triangles that share bead i.
    for(i=0;i<vtx->tristar_no;i++) triangle_normal_vector(vtx->tristar[i]);
    //energy and curvature
    energy_vertex(vtx);
    delta_energy=vtx->xk*(vtx->energy - ovtx->energy);
    //the same is done for neighbouring vertices
    for(i=0;i<vtx->neigh_no;i++){
        oenergy=vtx->neigh[i]->energy;
        energy_vertex(vtx->neigh[i]);
        delta_energy+=vtx->neigh[i]->xk*(vtx->neigh[i]->energy-oenergy);
    }
  //  fprintf(stderr, "DE=%f\n",delta_energy);
    //MONTE CARLOOOOOOOO
    if(delta_energy>=0){
#ifdef TS_DOUBLE_DOUBLE
        if(exp(-delta_energy)< drand48() )
#endif
#ifdef TS_DOUBLE_FLOAT
        if(expf(-delta_energy)< (ts_float)drand48())
#endif
#ifdef TS_DOUBLE_LONGDOUBLE
        if(expl(-delta_energy)< (ts_ldouble)drand48())
#endif
    {
    //not accepted, reverting changes
    vtx->x=xold;
    vtx->y=yold;
    vtx->z=zold;
    //update the normals of triangles that share bead i.
    for(i=0;i<vtx->tristar_no;i++) triangle_normal_vector(vtx->tristar[i]);
    //energy and curvature
    energy_vertex(vtx);
    //the same is done for neighbouring vertices
    for(i=0;i<vtx->neigh_no;i++) energy_vertex(vtx->neigh[i]);
  free(ovtx->bond_length);
    free(ovtx->bond_length_dual);
    free(ovtx);
    return TS_FAIL;
    }
}
    //END MONTE CARLOOOOOOO
    //TODO: change cell occupation if necessary!
    free(ovtx->bond_length);
    free(ovtx->bond_length_dual);
    free(ovtx);
    return TS_SUCCESS;
}
ts_bool single_bondflip_timestep(ts_vesicle *vesicle, ts_bond *bond, ts_double *rn){
/*c  Vertex and triangle (lm and lp) indexing for bond flip:
c      +----- k-------+              +----- k ------+
c      |lm1 / | \ lp1 |              |lm1 /   \ lp1 |
c      |  /   |   \   |              |  /       \   |
c      |/     |     \ |     FLIP     |/    lm     \ |
c     km  lm  | lp   kp    --->      km ---------- kp
c      |\     |     / |              |\    lp     / |
c      |  \   |   /   |              |  \       /   |
c      |lm2 \ | / lp2 |              |lm2 \   / lp2 |
c      +------it------+              +----- it -----+
c
*/
    ts_vertex *it=bond->vtx1;
    ts_vertex *k=bond->vtx2;
    ts_uint nei,neip,neim;
    ts_uint i,j;
    ts_double oldenergy, delta_energy;
 //   ts_triangle *lm=NULL,*lp=NULL, *lp1=NULL, *lp2=NULL, *lm1=NULL, *lm2=NULL;
    ts_vertex *kp,*km;
    if(it->neigh_no< 3) return TS_FAIL;
    if(k->neigh_no< 3) return TS_FAIL;
    if(k==NULL || it==NULL){
        fatal("In bondflip, number of neighbours of k or it is less than 3!",999);
    }
    for(i=0;i<it->neigh_no;i++){ // Finds the nn of it, that is k
        if(it->neigh[i]==k){
            nei=i;
            break;
        }
    }
    neip=nei+1;  // I don't like it.. Smells like I must have it in correct order
    neim=nei-1;
    if(neip>=it->neigh_no) neip=0;
    if((ts_int)neim<0) neim=it->neigh_no-1; /* casting is essential... If not
there the neim is never <0 !!! */
  //  fprintf(stderr,"The numbers are: %u %u\n",neip, neim);
    km=it->neigh[neim];  // We located km and kp
    kp=it->neigh[neip];
    if(km==NULL || kp==NULL){
        fatal("In bondflip, cannot determine km and kp!",999);
    }
  //  fprintf(stderr,"I WAS HERE! after the 4 vertices are known!\n");
/* test if the membrane is wrapped too much, so that kp is nearest neighbour of
 * km. If it is true, then don't flip! */
    for(i=0;i<km->neigh_no;i++){
        if(km->neigh[i] == kp) return TS_FAIL;
    }
 //   fprintf(stderr,"Membrane didn't wrap too much.. Continue.\n");
/* if bond would be too long, return... */
    if(vertex_distance_sq(km,kp) > vesicle->dmax ) return TS_FAIL;
 //   fprintf(stderr,"Bond will not be too long.. Continue.\n");
/* we make a bond flip. this is different than in original fortran */
// 0. step. Get memory prior the flip
  oldenergy=0;
  oldenergy+=k->xk* k->energy;
  oldenergy+=kp->xk* kp->energy;
  oldenergy+=km->xk* km->energy;
  oldenergy+=it->xk* it->energy;
//  for(i=0;i<k->neigh_no;i++) oldenergy+=k->neigh[i]->xk*k->neigh[i]->energy;
//  for(i=0;i<kp->neigh_no;i++) oldenergy+=kp->neigh[i]->xk*kp->neigh[i]->energy;
//  for(i=0;i<km->neigh_no;i++) oldenergy+=km->neigh[i]->xk*km->neigh[i]->energy;
//  for(i=0;i<it->neigh_no;i++) oldenergy+=it->neigh[i]->xk*it->neigh[i]->energy;
/*
fprintf(stderr,"*** Naslov k=%d\n",k);
fprintf(stderr,"*** Naslov it=%d\n",it);
fprintf(stderr,"*** Naslov km=%d\n",km);
fprintf(stderr,"*** Naslov kp=%d\n",kp);
for(i=0;i<k->neigh_no;i++)
    fprintf(stderr,"k sosed=%d\n",k->neigh[i]);
for(i=0;i<it->neigh_no;i++)
    fprintf(stderr,"it sosed=%d\n",it->neigh[i]);
for(i=0;i<km->neigh_no;i++)
    fprintf(stderr,"km sosed=%d\n",km->neigh[i]);
for(i=0;i<kp->neigh_no;i++)
    fprintf(stderr,"kp sosed=%d\n",kp->neigh[i]);
*/
  //  fprintf(stderr,"I WAS HERE! Before bondflip!\n");
    ts_flip_bond(k,it,km,kp, bond);
   // fprintf(stderr,"I WAS HERE! Bondflip successful!\n");
/* Calculating the new energy */
  delta_energy=0;
  for(i=0;i<k->neigh_no;i++) energy_vertex(k->neigh[i]);
  for(i=0;i<kp->neigh_no;i++) energy_vertex(kp->neigh[i]);
  for(i=0;i<km->neigh_no;i++) energy_vertex(km->neigh[i]);
  for(i=0;i<it->neigh_no;i++) energy_vertex(it->neigh[i]);
  delta_energy+=k->xk* k->energy;
  delta_energy+=kp->xk* kp->energy;
  delta_energy+=km->xk* km->energy;
  delta_energy+=it->xk* it->energy;
//  for(i=0;i<k->neigh_no;i++) delta_energy+=k->neigh[i]->xk*k->neigh[i]->energy;
//  for(i=0;i<kp->neigh_no;i++) delta_energy+=kp->neigh[i]->xk*kp->neigh[i]->energy;
//  for(i=0;i<km->neigh_no;i++) delta_energy+=km->neigh[i]->xk*km->neigh[i]->energy;
//  for(i=0;i<it->neigh_no;i++) delta_energy+=it->neigh[i]->xk*it->neigh[i]->energy;
  delta_energy-=oldenergy;
 // fprintf(stderr,"I WAS HERE! Got energy!\n");
/* MONTE CARLO */
    if(delta_energy>=0){
#ifdef TS_DOUBLE_DOUBLE
        if(exp(-delta_energy)< drand48() )
#endif
#ifdef TS_DOUBLE_FLOAT
        if(expf(-delta_energy)< (ts_float)drand48())
#endif
#ifdef TS_DOUBLE_LONGDOUBLE
        if(expl(-delta_energy)< (ts_ldouble)drand48())
#endif
        {
            //not accepted, reverting changes
       //     fprintf(stderr,"Failed to move, due to MC\n");
//            ts_flip_bond(km,kp,it,k, bond);
            ts_flip_bond(kp,km,k,it, bond);
/*
fprintf(stderr,"*** Naslov k=%d\n",k);
fprintf(stderr,"*** Naslov it=%d\n",it);
fprintf(stderr,"*** Naslov km=%d\n",km);
fprintf(stderr,"*** Naslov kp=%d\n",kp);
for(i=0;i<k->neigh_no;i++)
    fprintf(stderr,"k sosed=%d\n",k->neigh[i]);
for(i=0;i<it->neigh_no;i++)
    fprintf(stderr,"it sosed=%d\n",it->neigh[i]);
for(i=0;i<km->neigh_no;i++)
    fprintf(stderr,"km sosed=%d\n",km->neigh[i]);
for(i=0;i<kp->neigh_no;i++)
    fprintf(stderr,"kp sosed=%d\n",kp->neigh[i]);
*/
        //    fprintf(stderr,"Reverted condition!\n");
            return TS_FAIL;
        }
    }
        //    fprintf(stderr,"Success\n");
/* IF BONDFLIP ACCEPTED, THEN RETURN SUCCESS! */
    return TS_SUCCESS;
}
ts_bool ts_flip_bond(ts_vertex *k,ts_vertex *it,ts_vertex *km, ts_vertex *kp,
ts_bond *bond){
    ts_triangle *lm=NULL,*lp=NULL, *lp1=NULL, *lm2=NULL;
    ts_uint i,j, lmidx, lpidx;
if(k==NULL || it==NULL || km==NULL || kp==NULL){
    fatal("ts_flip_bond: You called me with invalid pointers to vertices",999);
}
// 1. step. We find lm and lp from k->tristar !
    for(i=0;i<it->tristar_no;i++){
        for(j=0;j<k->tristar_no;j++){
            if((it->tristar[i] == k->tristar[j])){ //ce gre za skupen trikotnik
                if((it->tristar[i]->vertex[0] == km || it->tristar[i]->vertex[1]
== km || it->tristar[i]->vertex[2]== km )){
                lm=it->tristar[i];
         //       lmidx=i;
                }
                else
                {
                lp=it->tristar[i];
         //       lpidx=i;
                }
            }
        }
    }
if(lm==NULL || lp==NULL) fatal("ts_flip_bond: Cannot find triangles lm and lp!",999);
//we look for important triangles lp1 and lm2.
 for(i=0;i<k->tristar_no;i++){
        for(j=0;j<kp->tristar_no;j++){
                if((k->tristar[i] == kp->tristar[j]) && k->tristar[i]!=lp){ //ce gre za skupen trikotnik
                    lp1=k->tristar[i];
            }
        }
}
 for(i=0;i<it->tristar_no;i++){
        for(j=0;j<km->tristar_no;j++){
            if((it->tristar[i] == km->tristar[j]) && it->tristar[i]!=lm){ //ce gre za skupen trikotnik
                    lm2=it->tristar[i];
            }
        }
    }
/*
// DEBUG TESTING!
fprintf(stderr,"*** Naslov k=%d\n",k);
fprintf(stderr,"*** Naslov it=%d\n",it);
fprintf(stderr,"*** Naslov km=%d\n",km);
fprintf(stderr,"*** Naslov kp=%d\n",kp);
for(i=0;i<k->neigh_no;i++)
    fprintf(stderr,"k sosed=%d\n",k->neigh[i]);
for(i=0;i<it->neigh_no;i++)
    fprintf(stderr,"it sosed=%d\n",it->neigh[i]);
// END DEBUG TESTING!
*/
if(lm2==NULL || lp1==NULL) fatal("ts_flip_bond: Cannot find triangles lm2 and lp1!",999);
//fprintf(stderr,"1. step: lm, lm2, lp1 and lp found!\n");
/*
//DEBUG TESTING
fprintf(stderr,"--- Naslov lm=%d",lm);
fprintf(stderr,"   vtxs(%d, %d, %d)\n",lm->vertex[0],lm->vertex[1], lm->vertex[2]);
fprintf(stderr,"--- Naslov lp=%d",lp);
fprintf(stderr,"   vtxs(%d, %d, %d)\n",lp->vertex[0],lp->vertex[1], lp->vertex[2]);
fprintf(stderr,"--- Naslov lm2=%d",lm2);
fprintf(stderr,"   vtxs(%d, %d, %d)\n",lm2->vertex[0],lm2->vertex[1], lm2->vertex[2]);
fprintf(stderr,"--- Naslov lp1=%d",lp1);
fprintf(stderr,"   vtxs(%d, %d, %d)\n",lp1->vertex[0],lp1->vertex[1], lp1->vertex[2]);
for(i=0;i<lm->neigh_no;i++)
    fprintf(stderr,"lm sosed=%d\n",lm->neigh[i]);
for(i=0;i<lp->neigh_no;i++)
    fprintf(stderr,"lp sosed=%d\n",lp->neigh[i]);
// END DEBUG TESTING
*/
/*
// DEBUG TESTING!
for(i=0;i<3;i++){
    if(lp1->neigh[i]==lp) fprintf(stderr,"Nasel sem par lp1->lp\n");
    if(lp->neigh[i]==lp1) fprintf(stderr,"Nasel sem par lp->lp1\n");
    if(lm2->neigh[i]==lm) fprintf(stderr,"Nasel sem par lm2->lm\n");
    if(lm->neigh[i]==lm2) fprintf(stderr,"Nasel sem par lm->lm2\n");
}
// END DEBUG TESTING!
*/
// 2. step. We change the triangle vertices... (actual bond flip)
    for(i=0;i<3;i++) if(lm->vertex[i]== it) lm->vertex[i]= kp;
    for(i=0;i<3;i++) if(lp->vertex[i]== k) lp->vertex[i]= km;
//fprintf(stderr,"2. step: actual bondflip made\n");
// 2a. step. If any changes in triangle calculations must be done, do it here!
//   * normals are recalculated here
    triangle_normal_vector(lp);
    triangle_normal_vector(lm);
// 3. step. Correct neighbours in vertex_list
            vertex_remove_neighbour(k,it);
            vertex_remove_neighbour(it,k);
            //Tukaj pa nastopi tezava... Kam dodati soseda?
            vertex_insert_neighbour(km,kp,k);
            vertex_insert_neighbour(kp,km,it);
//            vertex_add_neighbour(km,kp); //pazi na vrstni red.
//            vertex_add_neighbour(kp,km);
//fprintf(stderr,"3. step: vertex neighbours corrected\n");
// 3a. step. If any changes to ts_vertex, do it here!
//   bond_length calculatons not required for it is done in energy.c
// 4. step. Correct bond_list (don't know why I still have it!)
            bond->vtx1=km;
            bond->vtx2=kp;
//fprintf(stderr,"4. step: bondlist corrected\n");
// 5. step. Correct neighbouring triangles
    triangle_remove_neighbour(lp,lp1);
   // fprintf(stderr,".\n");
    triangle_remove_neighbour(lp1,lp);
  //  fprintf(stderr,".\n");
    triangle_remove_neighbour(lm,lm2);
  //  fprintf(stderr,".\n");
    triangle_remove_neighbour(lm2,lm);
    triangle_add_neighbour(lm,lp1);
    triangle_add_neighbour(lp1,lm);
    triangle_add_neighbour(lp,lm2);  //Vrstni red?!
    triangle_add_neighbour(lm2,lp);
//fprintf(stderr,"5. step: triangle neigbours corrected\n");
// 6. step. Correct tristar for vertices km, kp, k and it
            vertex_add_tristar(km,lp);  // Preveri vrstni red!
            vertex_add_tristar(kp,lm);
            vertex_remove_tristar(it,lm);
            vertex_remove_tristar(k,lp);
//fprintf(stderr,"6. step: tristar corrected\n");
/*
//DEBUG TESTING
fprintf(stderr,"--- Naslov lm=%d",lm);
fprintf(stderr,"   vtxs(%d, %d, %d)\n",lm->vertex[0],lm->vertex[1], lm->vertex[2]);
fprintf(stderr,"--- Naslov lp=%d",lp);
fprintf(stderr,"   vtxs(%d, %d, %d)\n",lp->vertex[0],lp->vertex[1], lp->vertex[2]);
fprintf(stderr,"--- Naslov lm2=%d",lm2);
fprintf(stderr,"   vtxs(%d, %d, %d)\n",lm2->vertex[0],lm2->vertex[1], lm2->vertex[2]);
fprintf(stderr,"--- Naslov lp1=%d",lp1);
fprintf(stderr,"   vtxs(%d, %d, %d)\n",lp1->vertex[0],lp1->vertex[1], lp1->vertex[2]);
for(i=0;i<lm->neigh_no;i++)
    fprintf(stderr,"lm sosed=%d\n",lm->neigh[i]);
for(i=0;i<lp->neigh_no;i++)
    fprintf(stderr,"lp sosed=%d\n",lp->neigh[i]);
// END DEBUG TESTING
*/
  energy_vertex(k);
  energy_vertex(kp);
  energy_vertex(km);
  energy_vertex(it);
// END modifications to data structure!
    return TS_SUCCESS;
}