Trisurf Monte Carlo simulator
Samo Penic
2012-07-10 e19e790e95f14ca69a7ce9c5e45d815fe21df36e
src/sh.c
@@ -143,7 +143,16 @@
}
/*Computes Y(l,m,theta,fi) (Miha's definition that is different from common definition for  factor srqt(1/(2*pi)) */
/** @brief: Computes Y(l,m,theta,fi)
 *
 * Function calculates Y^l_m for vertex with given (\theta, \fi) coordinates in
 * spherical coordinate system.
 * @param l is an ts_int argument.
 * @param m is an ts_int argument.
 * @param theta is ts_double argument.
 * @param fi is a ts_double argument.
 *
 * (Miha's definition that is different from common definition for  factor srqt(1/(2*pi)) */
ts_double shY(ts_int l,ts_int m,ts_double theta,ts_double fi){
   ts_double fac1, fac2, K;
   int i;
@@ -277,6 +286,7 @@
    ts_spharm *sph=vesicle->sphHarmonics;
    ts_coord *coord=(ts_coord *)malloc(sizeof(ts_coord));
    ts_double fi, theta;
   ts_int m;
    ts_vertex *cvtx;
    for(k=0;k<vesicle->vlist->n;k++){
        cvtx=vesicle->vlist->vtx[k];
@@ -284,13 +294,15 @@
        cart2sph(coord,cvtx->x, cvtx->y, cvtx->z);
        fi=coord->e2;
        theta=coord->e3; 
        for(i=0; i<sph->l; i++){
        for(i=1; i<sph->l; i++){
            for(j=0;j<i;j++){
                sph->Ylmi[i][j][k]=sph->co[i][j]*cos((j-i-1)*fi)*pow(-1,j-i-1)*plgndr(i,abs(j-i-1),cos(theta));
         m=j+1;
                sph->Ylmi[i][j][k]=sph->co[i][m]*cos((m-i-1)*fi)*pow(-1,m-i-1)*plgndr(i,abs(m-i-1),cos(theta));
            }
                sph->Ylmi[i][j+1][k]=sph->co[i][j+1]*plgndr(i,0,cos(theta));
            for(j=sph->l;j<2*i;j++){
                sph->Ylmi[i][j][k]=sph->co[i][j]*sin((j-i-1)*fi)*plgndr(i,j-i-1,cos(theta));
                sph->Ylmi[i][j+1][k]=sph->co[i][m+1]*plgndr(i,0,cos(theta));
            for(j=i+1;j<2*i;j++){
         m=j+1;
                sph->Ylmi[i][j][k]=sph->co[i][m]*sin((m-i-1)*fi)*plgndr(i,m-i-1,cos(theta));
            }
        }