| | |
| | | |
| | | |
| | | /* lets initialize co */ |
| | | sph->co=(ts_double **)calloc(l,sizeof(ts_double *)); |
| | | for(j=0;j<l;j++){ |
| | | sph->co[j]=(ts_double *)calloc(2*j+1,sizeof(ts_double)); |
| | | //NOTE: C is has zero based indexing. Code is imported from fortran and to comply with original indexes we actually generate one index more. Also second dimension is 2*j+2 instead of 2*j+2. elements starting with 0 are useles and should be ignored! |
| | | sph->co=(ts_double **)calloc(l+1,sizeof(ts_double *)); |
| | | for(j=0;j<=l;j++){ |
| | | sph->co[j]=(ts_double *)calloc(2*j+2,sizeof(ts_double)); |
| | | } |
| | | |
| | | sph->l=l; |
| | |
| | | if(sph->ulm[i]!=NULL) free(sph->ulm[i]); |
| | | if(sph->co[i]!=NULL) free(sph->co[i]); |
| | | } |
| | | if(sph->co[sph->l]!=NULL) free(sph->co[sph->l]); |
| | | if(sph->co != NULL) free(sph->co); |
| | | if(sph->ulm !=NULL) free(sph->ulm); |
| | | |
| | |
| | | } |
| | | |
| | | |
| | | /** @brief: Precomputes coefficients that are required for spherical harmonics computations. |
| | | |
| | | */ |
| | | ts_bool precomputeShCoeff(ts_spharm *sph){ |
| | | ts_int i,j,al,am; |
| | | ts_double **co=sph->co; |
| | | for(i=0;i<sph->l;i++){ |
| | | al=i+1; |
| | | for(i=1;i<=sph->l;i++){ |
| | | al=i; |
| | | sph->co[i][i+1]=sqrt((2.0*al+1.0)/2.0/M_PI); |
| | | for(j=0;j<i;j++){ |
| | | am=j+1; |
| | | for(j=1;j<=i-1;j++){ |
| | | am=j; |
| | | sph->co[i][i+1+j]=co[i][i+j]*sqrt(1.0/(al-am+1.0)/(al+am)); |
| | | sph->co[i][i+1-j]=co[i][i+1+j]; |
| | | } |
| | | co[i][2*i]=co[i][2*i]*sqrt(1.0/(2.0*al)); |
| | | co[i][0]=co[i][2*i+1]; |
| | | co[i][2*i+1]=co[i][2*i]*sqrt(1.0/(2.0*al)); |
| | | co[i][1]=co[i][2*i+1]; |
| | | co[i][i+1]=sqrt((2.0*al+1.0)/4.0/M_PI); |
| | | } |
| | | return TS_SUCCESS; |
| | |
| | | } |
| | | |
| | | |
| | | /*Computes Y(l,m,theta,fi) (Miha's definition that is different from common definition for factor srqt(1/(2*pi)) */ |
| | | /** @brief: Computes Y(l,m,theta,fi) |
| | | * |
| | | * Function calculates Y^l_m for vertex with given (\theta, \fi) coordinates in |
| | | * spherical coordinate system. |
| | | * @param l is an ts_int argument. |
| | | * @param m is an ts_int argument. |
| | | * @param theta is ts_double argument. |
| | | * @param fi is a ts_double argument. |
| | | * |
| | | * (Miha's definition that is different from common definition for factor srqt(1/(2*pi)) */ |
| | | ts_double shY(ts_int l,ts_int m,ts_double theta,ts_double fi){ |
| | | ts_double fac1, fac2, K; |
| | | int i; |
| | |
| | | ts_spharm *sph=vesicle->sphHarmonics; |
| | | ts_coord *coord=(ts_coord *)malloc(sizeof(ts_coord)); |
| | | ts_double fi, theta; |
| | | ts_int m; |
| | | ts_vertex *cvtx; |
| | | for(k=0;k<vesicle->vlist->n;k++){ |
| | | cvtx=vesicle->vlist->vtx[k]; |
| | |
| | | cart2sph(coord,cvtx->x, cvtx->y, cvtx->z); |
| | | fi=coord->e2; |
| | | theta=coord->e3; |
| | | for(i=0; i<sph->l; i++){ |
| | | for(i=1; i<sph->l; i++){ |
| | | for(j=0;j<i;j++){ |
| | | sph->Ylmi[i][j][k]=sph->co[i][j]*cos((j-i-1)*fi)*pow(-1,j-i-1)*plgndr(i,abs(j-i-1),cos(theta)); |
| | | m=j+1; |
| | | sph->Ylmi[i][j][k]=sph->co[i][m]*cos((m-i-1)*fi)*pow(-1,m-i-1)*plgndr(i,abs(m-i-1),cos(theta)); |
| | | } |
| | | sph->Ylmi[i][j+1][k]=sph->co[i][j+1]*plgndr(i,0,cos(theta)); |
| | | for(j=sph->l;j<2*i;j++){ |
| | | sph->Ylmi[i][j][k]=sph->co[i][j]*sin((j-i-1)*fi)*plgndr(i,j-i-1,cos(theta)); |
| | | sph->Ylmi[i][j+1][k]=sph->co[i][m+1]*plgndr(i,0,cos(theta)); |
| | | for(j=i+1;j<2*i;j++){ |
| | | m=j+1; |
| | | sph->Ylmi[i][j][k]=sph->co[i][m]*sin((m-i-1)*fi)*plgndr(i,m-i-1,cos(theta)); |
| | | } |
| | | } |
| | | |